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 Isc Short-circuit current 

 Jsc Short-circuit current density 

 Voc Open-circuit voltage 

 FF Fill factor 

 PCE Power-conversion efficiency 

 Rs Series resistance 

 Rsh Shunt resistance 

 ETL Electron transport layer 

 HTL Hole transport layer 

 ITO Indium Tin Oxide 

 PTAA  Poly (triaryl amine), Poly[bis(4-phenyl) 

(2,4,6- trimethylphenyl) amine] 

 PCBM Phenyl-C61-butyric acid methyl ester 

 NiO Nickel Oxide 

 PEDOT:PSS Poly(3,4-ethylenedioxythiophene) 

poly(styrenesulfonate) 

 P3HT Poly(3-hexylthiophene-2,5-diyl) 

 MAI Methylammonium iodide 

 PbI2 Lead Iodide 

 FAI Formamidium iodide 

 CB Chlorobenzene 

 DMF Dimethylformamide 
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 DMSO Dimethyl sulfoxide 

 CdS:In Indium doped Cadmium Sulfide 

 ZnO:Al Aluminum doped Zinc Oxide 

 SMU Source Measure Unit 

 CV Capacitance vs Voltage measurement 

 CF Capacitance vs Frequency measurement 

 CFT Capacitance-Voltage-Temperature 

measurement 

 QE Quantum efficiency  

 EQE External quantum efficiency 
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ABSTRACT 

Perovskite solar cells have great potential not only as a high-efficiency and low-

cost single junction solar cell, but also as a top cell (larger bandgap material) for tandem 

cells with either c-Si or CIGS solar cells. Perovskite as an active layer has a lot of 

fascinating photonic and electrical properties such a high absorption coefficient, low defect 

density, long diffusion lengths and low exciton binding energy. These properties have 

made perovskite an excellent choice for thin film solar cells. Given all exciting properties 

it also shows some very challenging characteristics such as hysteresis in light IV 

measurement, environmental instability, voltage evolution, self-degradation in dark and 

photon-induced degradation.  

In the initial part of this work, we have optimized the power-conversion efficiency 

of a p-i-n structured solar cell and obtained an efficiency of about 18.5%, which is one of 

the best cells in the world on PTAA as hole transport layer using single-solution processed 

antisolvent technique.   

For most part of this work, we have studied the detailed device physics to 

understand the photon-induced degradation of perovskite solar cells. We have developed a 

model based on generation and migration of ions. We have proposed a modified equivalent 

circuit model to understand the change in photovoltaic parameters during photon-induced 

degradation.  The degradation in short-circuit current density can be modeled using a 

double-exponential model which explains both migration and generation of ions. The 

change in open-circuit voltage can be explained by two opposing components: open-circuit 

voltage increases due to migration from ions from perovskite-transport layers’ interfaces 

towards bulk perovskite and decreases with increase in non-radiative recombination. These 
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factors can be considered with a dependent current source in parallel with the photo-

generated current source and a dependent voltage source in series with the diode to have 

complete equivalent circuit for perovskite solar cells. 

Finally, we have studied how different factors such as the transport layers, 

stoichiometry of perovskite (𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar ratio), the biasing conditions at which the 

device is kept during photo-degradation, fabrication techniques of perovskite (Solution or 

Vapor) and perovskite grain size can affect the photon-induced degradation and dark-

recovery. We have demonstrated that our model based on generation and migration of ions 

can explain these comparative studies completely.  

For electrical characterization, we have calculated the dielectric constant of 

perovskite using capacitance spectroscopy and reported this value to be about 60, which 

suggests that perovskite has exciton binding energy of about 0.59 meV.   
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CHAPTER 1.    INTRODUCTION: ENERGY, SOLAR ENERGY AND 

PHOTOVOLTAICS 

1.1 Energy 

Energy is in the center of human civilization and its survival. The need for energy is 

very much correlated with the growth of human development. The amount of energy used per 

capita can define the development of a nation in terms of technology. For example, in the year 

of 2015 United states of America and China together have consumed about 42% of total energy 

consumed by the whole world. But, united states of America had only 4.5% of total world’s 

population [1].  

This energy consumption involves total energy harnessed by every energy source from 

every technological sector across all the countries accept energy harnessed from food and 

direct biomass burning [2]. But the challenging part is that with the development of human 

civilization there is a continuous increase in need for energy. But most of the non-sustainable 

energy sources (such as oil, natural gas, coal etc.) have finite capacity. In addition to that some 

of them have a huge detrimental effect on environment. So, there is need for energy sources 

which are sustainable and causes less environmental pollution. Renewable energy sources can 

be a solution to this problem although the costs of harnessing energy from these sources are 

still a little too high. 

 

1.2 Renewable Energy 

Renewable energy is a kind of energy that is harnessed from renewable resources such 

as wind, sunlight, tides, waves, geothermal heat etc. [3]. Most of the renewable sources of 

energy are sustainable and environment friendly. Renewable energy sources can provide long 

term solutions for energy crisis in the future.  
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Figure 1.1: The world’s energy consumption by source in 2012 [3] 

 

In the year of 2012 only about 19% of the world’s total energy consumption came from 

renewable sources of energy and the rest 81% was coming from combination of non-renewable 

sources of energy such as petroleum, coal, natural gas and nuclear energy. The main reason to 

extract energy from these non-renewable sources is that they are relatively inexpensive to 

extract energy from. More to that they can be stored or shipped from one place to another very 

easily. But most of these sources are no environment friendly. For instance, burning coal 

releases many toxic gases and pollutants in to the atmosphere. Mining coal is also one of the 

dangerous jobs in the world [4].  Also, these non-renewable sources of energy have limited 

capacity which means excessive use of them will result in running out of them. So, quest for 

renewable sources of energy getting huge attention day-by-day. 

There are several sources of non-renewable energy available to us such as wind, 

sunlight, tides, waves, geothermal heat etc. There is a rapid increase in capacity over the years 

for different types of renewable energy sources [5]. Although wind and hydro power sources 

dominating during the early years, slowly other forms of renewable energies especially Solar 

PV is growing up in terms of capacity very rapidly. 
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1.3 Solar Energy 

Solar energy comes from the sun to the earth as electromagnetic rays. Although only a 

small fraction of energy from the sun arrives the earth, that can be enough to fulfill the energy 

need of mankind. Solar energy is one of the most prominent sources of renewable energy and 

have already showed a great potential to be a prime source of energy in the future.  The 

advantages of solar energy are: 

❖ Solar energy is abundant in nature.  

❖ Solae energy is mostly environmental friendly. 

❖ The maintenance cost of solar panels is comparatively very low. 

❖ This technology can have almost no noise pollution. 

❖ It provides a very reliable source of energy. 

❖ Solar power also provides energy security.  

❖ Solar energy is also a sustainable source of energy. 

 

 

Figure 1.2: Potential for various energy sources and global energy consumption [7] 

Figure 1.2 shows the actual potential of solar energy compared to other sources. The 

potential power that can be extracted from solar energy is about 2300 TW/year which is way 
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more compared to any other sources of energy. The total power consumed by the mankind is 

about 16 TW/year. So, efficient extraction of solar energy can be enough to fulfill all the energy 

need for mankind. But the actual picture regarding the portion of energy utilized from different 

sources in 2014 has been reported in figure 1.6. It shows that about 76% of total energy 

consumed was coming from non-renewable sources and the rest 24% was coming from 

renewable energy sources. If we analyze the breakdown of this 24% from renewable energy, 

we can see that only about 1.2% was coming from Solar PV [7].  

 

Figure 1.3: Renewable energy share from renewable sources in global energy 

consumption in 2014 [7] 

 

From the discussion so far, we can see that Solar PV has huge potential to meet the 

global energy consumption, but there is reluctance to utilize Solar PV as the primary source of 

energy. The reason behind this can easily be understood from the comparison in cost per unit 

among different sources of energy [8]. The cost per unit for Solar PV is still high compared to 

other sources. Low extraction and power conversion efficiency attributes as a main reason 

behind high cost of Solar PV. For a given solar intensity the amount of power extracted from 

a solar panel is dependent of power conversion efficiency as well as the area of the solar panel. 

So, lower efficiency solar panels will need relatively larger area to extract same amount of 
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power. As the power conversion efficiency for solar panels still not very high it is 

comparatively more expensive. Also because of cloudy days and smaller day time can limit 

the amount of power that can be extracted from a given solar panel. So, storage of energy is 

becoming very important. So, we also need to make our energy storage and distribution more 

efficient. Also, the production cost of some state-of-the art solar panels is still very high. 

But the encouraging sign for Solar PV is that the cost per unit power is going down 

exponentially over the years (Figure 1.4) [8]. Figure 1.8 also showed that if we can keep going 

at our current pace by 2030 the projection shows that the Solar PV can be cheapest compared 

to any other sources of energy. 

 

Figure 1.4: Exponential decrease in cost of solar power ($/Watt) over the years [8] 

 

1.4 Photovoltaics 

The process of converting solar energy to electricity is called photovoltaics. This 

process can be done using solar cells [9]. It is becoming a very important renewable source of 

energy. Although people have started using it to in 19th century to solar energy, the first real 

photovoltaic device was demonstrated in the 1950s by Bell lab. It has seen a real boost in 
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research and development of photovoltaics specially in satellite applications. But these solar 

cells were very expensive. In 1980s the research in silicon solar cells showed a lot of promise 

by achieving efficiency more than 20%. Then slowly lot of thin film and multi-junction solar 

cells have got interest from various research groups. And now this industry is looking very 

promising for long term energy solution [9].   

 

1.5 Outline of This Thesis 

The chapter 2 describes the device physics and equivalent circuit model of solar cells.  

Different characterization techniques, which can be used to understand the operational 

principle and troubleshoot the problems, has been described in chapter 3. In chapter 4 we have 

described material properties of perovskite and challenges that we face with perovskite solar 

cells. Then in chapter 5 we have presented different fabrication techniques available for 

perovskite. In this chapter, we have also demonstrated a method to optimize the power 

conversion efficiency of a p-i-n structured perovskite solar cell. We have developed a model 

on photon-induced degradation of perovskite solar cells based on generation and migration of 

ions and proposed a modified equivalent circuit model to describe this phenomenon in chapter 

6. Then in chapter 7 we have studied how different factors can affect the photon-induced 

degradation. We have studied the influence of the transport layers, stoichiometry of perovskite 

(𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar ratio), the biasing conditions at which the device is kept during photo-

degradation, fabrication techniques of perovskite (Solution or Vapor) and perovskite grain size 

on photon-induced degradation and dark-recovery. Finally, in chapter 8 we have presented the 

future work regarding how photon-induced can be minimized with optimization of several 

factors. 
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CHAPTER 2.    DEVICE PHYSICS OF SOLAR CELLS 

2.1 Introduction 

Solar cell is a kind of electronic device which absorbs sunlight and converts solar 

energy directly to electricity. Both current and voltage can be generated upon incident of 

sunlight on solar cell. Thus, it can generate electric power from solar energy. This process 

requires a material which can absorb the sunlight create electron-hole pairs. These electron-

hole pairs can diffuse and drift before getting collected by the contact layers. These higher 

energy electron and holes can flow through an external circuit from a solar cell and generate 

photo-current. Finally, these higher energy electrons and holes dissipate energy into an external 

load, return to the solar cell and recombine. Although there are lot of different materials that 

are suitable for photovoltaic energy conversion, but mostly in practice we use PN junction to 

convert solar energy to electricity. 

 

Figure 2.1: Cross section of a solar cell [1] 
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So, the basic steps in operation of a solar cell involves the following four processes [1]: 

❖ The generation of photo-generated electron-hole pairs 

❖ The collection of these photo-generated carriers to generate electrical current 

❖ The generation of large voltage across the solar cell 

❖ The dissipation of power into the external load and parasitic resistances  

 

There are four basic processes which play role in photovoltaic energy conversion. They are: 

(i) Absorption of incident photons 

(ii) Generation of free electron-hole pairs 

(iii) Transport of photo-generated carriers 

(iv) Collection of photo-generated carriers 

 

In the following sections of this chapters, these processes will be discussed in detail 

with the help of semiconductor device physics. The mechanism of losing these photo-generated 

carriers also known as recombination will also be discussed.  

 

2.2 Absorption of Incident Photons 

The first step of conversion of solar energy to electricity involves the absorption of 

incident photons. The absorption of these photons depends on the quantum energy of each 

photons and the energy levels of the absorber layer. When a photon in incident on a material 

and have been absorbed, it can excite an electron to from the lower energy state to a higher 

energy state. We know that the energy levels inside a material is quantized. So, the incident 

photon must be high enough energy to transfer an excited electron to an allowed higher energy 
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state. If the energy of the incident photon is not high enough, the photon will not be absorbed 

rather will be transmitted through the material. So, to absorb the energy of a photon at least 

two-level energy system is required. And to utilize this energy the lifetime of the carrier at the 

excited state must be greater than the time required for a carrier to transfer from a lower energy 

state to a higher energy state. There is a forbidden gap between the lower and higher energy 

levels. The lower energy level is called valance-band and higher energy level is commonly 

known as conduction band. And the difference between these energy levels is called bandgap 

of the material. For a two level-system in a material a negatively charged electron can absorb 

a photon equal or greater than the bandgap of the material and have transition to higher energy 

conduction band. In a semiconductor material, this transition can happen in two different ways: 

(i) Band-to-band transition (figure 2.2) 

(ii) Transition assisted by defect states (figure 2.3) 

 

 

Figure 2.2: Absorption through band-to-band transition when incident photon has 

higher energy than the bandgap [3] 
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Figure 2.3: Absorption assisted by defect states when incident photon has lower 

energy than the bandgap [3] 

 

Figure 2.2 graphically demonstrates the absorption through band-to-band transition 

when the incident photon has lower energy than the bandgap. If the photon energy is higher 

than the bandgap the electron can move to an energy state even higher than the conduction 

band before going through a relaxation process and dissipates the excess energy (ℎ𝜐 − 𝐸𝑔) as 

thermal energy.  

Figure 2.3 graphically demonstrates the absorption assisted by transition through the 

defect states within the bandgap. This phenomenon can happen if the incident photon has 

energy lower than the bandgap. This transition can be assisted by either tail states, midgap 

states or both. If the energy of incident photon is such that it doesn’t support either band-to-

band or trap assisted transition, then it just transmits through and material and contributes to 

the loss mechanism of a solar cell. 

The band-to-band transition can also be classified into two categories: direct transition 

and indirect transition.  
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Figure 2.4: Absorption through band-to-band transition (a) direct transition (b) 

indirect transition [3] 

 

For direct transition, the transition of electron from lower energy state to higher energy 

state involves only change in energy as the momentum of electrons and holes is the same in 

both conduction and valance band. In case of indirect transition, the transition of electron 

involves change in both energy and momentum. Based on either direct or indirect transition is 

allowed semiconductor materials can be classified into two categories: direct bandgap and 

indirect bandgap material. If a material allows direct transition of electron from valance to 

conduction band it is called direct bandgap material. On the other hand, if transition of electron 

needs change in both energy and momentum the material can be classified as indirect bandgap 

semiconductor. Both direct and indirect bandgap semiconductor can serve as absorber layer 

for photovoltaics applications. 

How good a material is an absorber layer can be defined by absorption coefficient 

which is a function of wavelength of incident photon. The absorption coefficient of a direct 

bandgap semiconductor can be given by [5], 
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𝛼 = 𝐴(ℎ𝜐 − 𝐸𝑔)
1
2 

    Where, A is the proportional constant which is a function of effective electron and 

hole masses. 

For indirect bandgap semiconductor, the absorption coefficient when an absorption of 

photon involves is given by [5], 

𝛼 =
𝐴(ℎ𝜐 − 𝐸𝑔 + 𝐸𝑝)2

𝑒
𝐸𝑝
𝑘𝑇 − 1

 

Again, A is the proportional constant which is a function of effective electron and hole 

masses and 𝐸𝑝 is the energy of photon that is being absorbed. 

As the tail and midgap state usually has very low density the absorption coefficient 

associated with this kind of transition is also very small. But it gives information about the 

distribution of sub-gap states. The expression for this kind of transition is given by [6],  

𝛼 = 𝐴𝑒
ℎ𝜐
𝐸𝑢 

Here, 𝐸𝑢 is called Urbach energy which is a function of tail and mid-gap defect states’ 

distribution. 

As light travels through the material the intensity goes down exponentially with 

distance and it can be expressed as,  

𝐼 = 𝐼0𝑒−𝛼𝑥 

Where, I is the intensity at distance x, 𝐼0is the intensity of light before any absorption 

and α is the absorption coefficient. This equation can be used to determine how much light has 

been absorbed for a given thickness of the semiconductor. 

 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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For semiconductor materials in photovoltaics application absorption coefficient is a 

very important parameter as it determines how much light the material is going to absorb within 

a given thickness. The higher the absorption coefficient the more light can be absorbed within 

a given thickness. In other words, for a semiconductor material with higher absorption 

coefficient needs thinner layer to absorb the photons effectively. Figure 2.5 shows absorption 

coefficient for different semiconductor materials used as absorber layers in photovoltaic 

applications. We can see that perovskite has higher absorption coefficient that c-Si which 

means very thin film (~500-600nm) of perovskite can be used to absorb most of the photons 

effectively. 

 

Figure 2.5: Absorption coefficient for different semiconductor materials used as 

absorber layers in photovoltaic applications [7] 
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2.3 Generation of Free Electron-hole Pairs 

Absorption of photon gives rise to an excited electron into the conduction band as well 

as a vacancy of electron, which is also known as a hole in the valance band. The electron-hole 

pair generated from the same absorption event are bound together with an attractive coulomb 

force. This bound electron-hole pair gains stability to an energy state which is slightly below 

the energy of an unbound electron and hole satisfying minimization of energy in nature. This 

quasi-neutral charge particle is called an exciton. So, absorption of photon generates exciton 

which needs some extra energy to create free electron and hole.  

Whether a photon-absorption event in a material will result in generation of exciton or 

free electron or hole depends on the exciton binding energy for that material. For photovoltaic 

application, we prefer the exciton binding energy to be lower than thermal energy which is 

given by 1/𝑘𝑇; where k in Boltzmann constant and T is the temperature. At room temperature, 

this thermal energy is about 26 meV. So, if the binding energy of exciton is less than 26 meV 

expect to have free electron hole pair upon photon absorption (example: crystalline silicon, 

perovskite etc.). On the other hand, if the exciton binding energy is higher than thermal energy, 

then photon absorption generates exciton and it requires external energy to create free electrons 

and holes. For example, organic semiconductors have exciton binding energy higher than 

thermal energy and it needs type II heterojunction structure to make it work.  

The exciton binding energy in a semiconductor is a function of dielectric constant of 

the material. The higher the dielectric constant the lower the coulomb attraction force between 

the generated electron-hole pair and so, has lower exciton binding energy. The exciton binding 

energy in a material can be calculated using equation (2.5), 

𝐸𝑏 =
µ𝑒4

2ℏ2ℰ2
 (2.5) 
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Where, 𝐸𝑏 is the exciton binding energy, µ is the effective mass of electron, ℰ is the 

dielectric constant of the semiconductor material. 

For example, crystalline silicon has a dielectric constant of 11.9 which means it has 

exciton binding energy of 15 meV [8]. Perovskite has dielectric constant of about 60 which 

means it has exciton binding energy of about 0.59 meV (This will be discussed later in this 

thesis). Both perovskite and crystalline silicon has exciton binding energy lower than the 

thermal energy which means these materials have free electrons and holes with absorption of 

photon. On the other hand, the organic semiconductors have very low dielectric constant which 

is in the range of 2-5. As a result, they have exciton binding energy in the range of 0.2-1 eV 

which is much higher than thermal energy of 26 meV [9]. Thus, organic semiconductors have 

exciton generated with absorption of photons. For photovoltaic applications, it is expected to 

have exciton binding energy lower than thermal energy to achieve high power conversion 

efficiency.   

 

2.4 Transport of Photo-generated Carriers 

The next step for generation of electricity in photovoltaics is separation and collection 

of photo-generated free charge carriers. This process can be contributed by two transport 

mechanisms: diffusion-based transport and drift-based transport [10,11]. If the transport of 

charge carriers is driven by gradient in concentration in the semiconductor material, then this 

process is known as diffusion-based transport. On the other hand, if the transport of these 

carriers is driven by electric field inside the semiconductor material, then this process is known 

as drift-based transport. As a solar cell generally works at a maximum power point condition 

where we achieve a near flat band condition, the electric field inside the device is significantly 
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small in normal operating condition. In this condition, the diffusion-based transport dominates 

over drift-based transport. Thus, the collection efficiency of the photo-generated carriers is 

dependent on diffusion length of electron and holes. If we consider both diffusion and drift 

based transport, which is also known as ambipolar transport, then transport equation is given 

by [10,11],  

𝜕𝛥𝑛

𝜕𝑡
= 𝐷′

𝜕2𝛥𝑛

𝜕𝑥2
+ µ′ℰ

𝜕𝛥𝑛

𝜕𝑥
+ 𝐺 − 𝑅 

Where, 𝛥𝑛 is the excess of electron concentration, µ′ is ambipolar mobility,  ℰ is the 

net electric field, 𝐷′ is ambipolar diffusion coefficient, G is generation rate and R is 

recombination rate. 

The ambipolar mobility can be given by [10,11],  

µ′ =
µ𝑛µ𝑝(𝑝 − 𝑛)

𝑛µ𝑛 + 𝑝µ𝑝
 

The ambipolar diffusion coefficient can be given by [10,11],  

𝐷′ =
𝑛µ𝑛𝐷𝑝 + 𝑝µ𝑝𝐷𝑛

𝑛µ𝑛 + 𝑝µ𝑝

 

Where, µ𝑛 and µ𝑝are electron and hole mobilities respectively, 𝐷𝑝 and 𝐷𝑛 are electron 

and hole diffusion coefficients respectively, 𝑛 and 𝑝 are electron and hole concentration 

respectively. 

 In a n-type semiconductor for low level injection equation (2.6) becomes,  

𝜕𝛥𝑝

𝜕𝑡
= 𝐷𝑝

𝜕2𝛥𝑝

𝜕𝑥2
+ µ𝑝ℰ

𝜕𝛥𝑝

𝜕𝑥
+ 𝐺 −

𝛥𝑝

𝜏𝑝

 

Where, 𝜏𝑝 is lifetime of hole. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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In a p-type semiconductor for low level injection equation (2.6) becomes,  

𝜕𝛥𝑛

𝜕𝑡
= 𝐷𝑛

𝜕2𝛥𝑛

𝜕𝑥2
+ µ𝑛ℰ

𝜕𝛥𝑛

𝜕𝑥
+ 𝐺 −

𝛥𝑛

𝜏𝑛

 

Where, 𝜏𝑛 is lifetime of electron. 

The transport of carriers in photovoltaic process is dominated by minority carriers. In 

the next part both the diffusion and drift controlled transport processes have been explained. 

 

2.4.1 Diffusion-based transport of carriers: 

If the transport of charge carriers is driven by gradient in concentration in the 

semiconductor material, then this process is known as diffusion-based transport. If we consider 

an n-type material where minority charge carriers are holes and there is no generation of excess 

charge with internal electric field inside the material is zero, then the transport of minority 

charges is dominated by diffusion of these charge carriers. Then the continuity equation in 

equation (2.9) becomes,  

𝜕𝛥𝑝

𝜕𝑡
= 𝐷𝑝

𝜕2𝛥𝑝

𝜕𝑥2
−

𝛥𝑝

𝜏𝑝
= 0 

The solution of this second order differential equation is,  

𝛥𝑝 =  𝛥𝑝(𝑥 = 0)𝑒
−

𝑥
𝐿𝑝 

Here, 𝐿𝑝 is hole diffusion length and is given by,  

𝐿𝑝 = √𝐷𝑝𝜏𝑝 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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If we consider a p-type material where minority charge carriers are electrons and there 

is no generation of excess charge with internal electric field inside the material is zero, then 

the continuity equation in equation (2.10) becomes,  

𝜕𝛥𝑛

𝜕𝑡
= 𝐷𝑛

𝜕2𝛥𝑛

𝜕𝑥2
−

𝛥𝑛

𝜏𝑛

= 0 

The solution of this second order differential equation is,  

𝛥𝑛 =  𝛥𝑛(𝑥 = 0)𝑒
−

𝑥
𝐿𝑛 

Here, 𝐿𝑛 is electron diffusion length and is given by,  

𝐿𝑛 = √𝐷𝑛𝜏𝑛 

Both equation (2.12) and (2.15) suggests that the minority carrier concentration will 

decay exponentially during transport by diffusion. Higher the diffusion length greater the 

probability for the charge carriers being collected. If the thickness of the absorber layer in a 

solar cell is 𝑡 and diffusion dominates the transport then it is expected that 𝐿𝑛, 𝐿𝑝 ≫ 𝑡. 

Satisfying this condition will enhance the collection efficiency significantly.  

 

2.4.2 Drift-based transport of carriers: 

If the transport of these carriers is driven by electric field inside the semiconductor 

material, then this process is known as drift-based transport. If the diffusion length within a 

material is low then we need electric field to assist the charge transport. In other words, we 

need drift based transport (for example, amorphous silicon and organic solar cells).  

If we consider an n-type material where minority charge carriers are holes and there is 

no generation of excess charge with significant electric field inside the material, then the 

(2.15) 

(2.16) 

(2.14) 
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transport of minority charges is dominated by drift of these charge carriers. Then the continuity 

equation in equation (2.9) becomes,  

𝜕𝛥𝑝

𝜕𝑡
= µ𝑝ℰ

𝜕𝛥𝑝

𝜕𝑥
−

𝛥𝑝

𝜏𝑝
= 0 

The solution of this second order differential equation is,  

𝛥𝑝 =  𝛥𝑝(𝑥 = 0)𝑒
−

𝑥
𝑅𝑝 

Here, 𝑅𝑝 is called drift range of holes and is given by,  

𝑅𝑝 = µ𝑝𝜏𝑝ℰ 

 If both drift and diffusion based transport contributes in transport of charge carriers, 

then a critical electric field can be defined which determines whether the transport is dominated 

by diffusion or drift. This critical electric field is given by [10,12],   

ℰ𝑐 =
𝑘𝑇

𝑞𝐿𝑝
 

If the net internal electric field, ℰ > ℰ𝑐  then the transport of carriers is dominated by 

drift. On the other hand, If the net internal electric field, ℰ < ℰ𝑐  then the transport of carriers 

is dominated by diffusion. 

Now, if we consider a p-type material where minority charge carriers are electrons and 

there is no generation of excess charge with significant electric field inside the material, then 

the transport of minority charges is dominated by drift of these charge carriers. Then the 

continuity equation in equation (2.10) becomes,  

𝜕𝛥𝑛

𝜕𝑡
= µ𝑛ℰ

𝜕𝛥𝑛

𝜕𝑥
−

𝛥𝑛

𝜏𝑛
= 0 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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The solution of this second order differential equation is,  

𝛥𝑛 =  𝛥𝑛(𝑥 = 0)𝑒
−

𝑥
𝑅𝑛 

Here, 𝑅𝑛 is called drift range of electrons and is given by,  

𝑅𝑛 = µ𝑛𝜏𝑛ℰ 

 The critical electric field is given by [10,12],   

ℰ𝑐 =
𝑘𝑇

𝑞𝐿𝑛

 

If the net internal electric field, ℰ > ℰ𝑐  then the transport of carriers is dominated by 

drift. On the other hand, If the net internal electric field, ℰ < ℰ𝑐  then the transport of carriers 

is dominated by diffusion. 

If the diffusion length of minority charge carrier is significantly lower within a material, 

then a p-i-n sandwich kind of structure can be used to improve charge transport. This kind of 

sandwich structure involves an intrinsic absorber layer is sandwiched within a doped p-type 

and n-type semiconductor. The direction of the electric field will be from the n-type 

semiconductor to the p-type semiconductor. The p-type and n-type semiconductors are often 

termed as hole transport layer (HTL) and electron transport layer (ETL) respectively. After the 

free electrons and holes are generated these carriers will drift in opposite directions assisted by 

the internal electric field. As the transport will be drift dominated the low diffusion length will 

not affect the collection efficiency. The p and n-type layers are usually significantly thinner 

compared with thinner compared to the intrinsic layers to reduce the loss due to low diffusion 

lengths.  

 

(2.22) 

(2.23) 

(2.24) 
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2.5 Collection of Photo-generated Carriers 

The final step for photovoltaic process is to collect the photo-generated carriers. After 

the carriers are transported to the electrodes, they need to be collected by an ohmic contact 

between semiconductor and electrode. To collect electron the semiconductor work function of 

semiconductor must be higher than work function of electrode so that the junction doesn’t form 

a schottky barrier. On the other hand, to collect holes work function of electrode must be higher 

than work function of semiconductor. Thus, a proper choice of electrodes is required along 

with the transport layers to achieve high power conversion efficiency of solar cells. 

 

2.6 Recombination 

Recombination is one of the loss mechanisms for solar cells which leads to loss in 

photo-generated carriers. It will reduce the collection efficiency of photo-generated carriers.  

The excited electron from the conduction band can release energy and recombine with a hole 

in valance band to return to ground state. This kind of recombination can be either radiative or 

non-radiative. If this recombination process releases excess of energy in form of photon then 

this recombination process is called radiative recombination. If this recombination process 

releases energy in form of phonons then this recombination is known as non-radiative 

recombination. There are three major recombination mechanisms: band-to-band 

recombination, trap assisted recombination (SRH recombination) and Auger recombination as 

illustrated in figure 2.7.   
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Figure 2.6: Different recombination mechanisms: (a) Band-to-band, (b) Trap-

assisted and (c) Auger recombination [10] 

 

2.6.1 Band-to-band recombination [10,11] 

For band-to-band recombination the excited electron from conduction band recombines 

with a hole in valance band and releases excess of energy in the form of a photon. The released 

photon has energy almost equal to the bandgap of the material. Thus, this kind of 

recombination is a radiative recombination. The rate of band-to-band recombination is given 

by, 

𝑅 =  𝐶𝐵(𝑛𝑝 − 𝑛𝑖
2) 

Where, 𝐶𝐵 is the recombination coefficient, n and p are electron and hole carrier 

concentrations respectively, 𝑛𝑖 is intrinsic carrier concentration. We can consider two levels of 

injection: low level or small signal and high level or large signal injection. 

 

 

(2.25) 

(a) 

(b) (c) 



www.manaraa.com

24 

(i) Low-level injection: 

For small signal condition during low level injection (𝛥𝑛, 𝛥𝑝 ≪ 𝑛) on a n-type 

semiconductor (𝑛 ≫ 𝑝 and 𝑛 ≫ 𝑛𝑖), we can simplify equation (2.25) as,  

𝑅 = 𝐶𝐵𝑛𝛥𝑝 =
𝛥𝑝

1/𝐶𝐵𝑛
 

If the minority carrier lifetime, 𝜏𝐵 =
1

𝐶𝐵𝑛
 then equation (2.26) becomes,  

𝑅 =
𝛥𝑝

𝜏𝐵

 

 For a p-type semiconductor (𝑝 ≫ 𝑛 and 𝑝 ≫ 𝑛𝑖) with low level injection (𝛥𝑛, 𝛥𝑝 ≪ 𝑝) 

we can simplify equation (2.25) as, 

𝑅 = 𝐶𝐵𝑝𝛥𝑛 =
𝛥𝑛

1/𝐶𝐵𝑝
 

If the minority carrier lifetime, 𝜏𝐵 =
1

𝐶𝐵𝑝
 then equation (2.26) becomes,  

𝑅 =
𝛥𝑛

𝜏𝐵
 

 The lifetime of minority carriers is a function of majority carrier concentration for 

band-to-band recombination for low-level injection. 

  

(ii) High-level injection: 

For large signal condition during high level injection (𝛥𝑛, 𝛥𝑝 ≫ 𝑛0,𝑝0) then equation 

(2.25) can be simplified as,  

𝑅 = 𝐶𝐵𝛥𝑛𝛥𝑝 = 𝐶𝐵𝑛𝑝 = 𝐶𝐵𝑛2 = 𝐶𝐵𝑝2 

(2.26 a) 

(2.26 b) 

(2.27) 

(2.28) 

(2.29) 



www.manaraa.com

25 

2.6.2 Trap-assisted recombination or SRH recombination [10,11] 

As showed in figure 2.6 (b) a hole from the valance band and an electron from the 

conduction band can recombine assisted by a trap sate within the bandgap of the material. This 

kind of recombination is known as trap-assisted recombination. It is also known as Schockley-

Read-Hall or SRH recombination. It can take place either inside the bulk of a material or at the 

interfaces between two materials. The recombination rate for SRH recombination can be 

expressed as,  

𝑅 =
𝑛𝑝 − 𝑛𝑖

2

𝜏𝑝(𝑛 + 𝑛1) + 𝜏𝑛(𝑝 + 𝑝1)
 

Where, 𝑛1 and 𝑛2 are constants and follows the following equations, 

𝑛1 = 𝑛𝑖𝑒
(𝐸

𝑇′−𝐸𝑖)

𝑘𝑇  

𝑝1 = 𝑛𝑖𝑒
(𝐸𝑖−𝐸

𝑇′)

𝑘𝑇  

𝑛1𝑝1 = 𝑛𝑖
2 

The carrier lifetimes for electron and hole is given by,  

𝜏𝑝 =
1

𝐶𝑝𝑁𝑇
 

𝜏𝑛 =
1

𝐶𝑛𝑁𝑇

 

Here, 𝐶𝑝 and 𝐶𝑛 are SRH recombination coefficients for hole and electron respectively 

and 𝑁𝑇 is the trap density of states. The minority carrier lifetime is a function of density of 

traps. 

Again, we can consider both low-level and high-level injection. 

(2.30) 

(2.31) 

(2.32) 

(2.35) 

(2.33) 

(2.34) 
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(i) Low-level injection: 

For small signal condition during low level injection (𝛥𝑛, 𝛥𝑝 ≪ 𝑛) on a n-type 

semiconductor (𝑛 ≫ 𝑝 and 𝑛 ≫ 𝑛𝑖), we can simplify equation (2.30) as,  

𝑅 =
𝛥𝑝

𝜏𝑝

= 𝐶𝑝𝛥𝑝𝑁𝑇 

For a p-type semiconductor (𝑝 ≫ 𝑛 and 𝑝 ≫ 𝑛𝑖) with low level injection (𝛥𝑛, 𝛥𝑝 ≪ 𝑝) 

we can simplify equation (2.30) as,  

𝑅 =
𝛥𝑛

𝜏𝑛

= 𝐶𝑛𝛥𝑛𝑁𝑇 

For trap-assisted recombination with low level injection the minority carrier lifetime is 

inversely proportional to the density of traps. 

 

(ii) High-level injection: 

For large signal condition during high level injection (𝛥𝑛, 𝛥𝑝 ≫ 𝑛0,𝑝0) then equation 

(2.30) can be simplified as,  

𝑅 =
𝛥𝑛

𝜏𝑛 + 𝜏𝑝

=
𝛥𝑝

𝜏𝑛 + 𝜏𝑝

 

Here, the effective carrier lifetime, 𝜏 = 𝜏𝑛 + 𝜏𝑝 is larger than carrier lifetime in low 

level injection. So, the minority carrier lifetime at large signal condition is lower than at small 

signal condition if the recombination is dominated by SRH recombination. 

 

 

 

(2.36) 

(2.37) 

(2.38) 
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2.6.3 Auger recombination [10,11] 

The mechanism of Auger recombination has been illustrated in figure 2.6(c). During 

this process energy released from a band-to-band or trap-assisted recombination will give rise 

to an excited electron into the conduction band, before this excited electron goes through 

thermal relaxation and settles at the bottom of conduction band. The Auger recombination 

dominates if the material is very heavily doped.  

Auger recombination rate for a n-type semiconductor can be expressed by the following 

equation,  

𝑅 = 𝐶𝐴𝑛(𝑛𝑝 − 𝑛𝑖
2) 

For a p-type semiconductor,  

𝑅 = 𝐶𝐴𝑝(𝑛𝑝 − 𝑛𝑖
2) 

Where, 𝐶𝐴 is Auger recombination coefficient, 𝑛 and 𝑝 are electron and hole 

concentrations respectively, 𝑛𝑖 is the intrinsic carrier concentration. 

For n-type semiconductor with low level injection the rate of recombination in equation 

(2.39) can be simplified to,  

𝑅 = 𝐶𝐴𝑛0
2𝛥𝑝 =

𝛥𝑝

𝜏𝑝

 

Where, the minority carrier lifetime for hole is given by,  

𝜏𝑝 =
1

𝐶𝐴𝑛0
2 

For p-type semiconductor with low level injection the rate of recombination in equation 

(2.40) can be simplified to,  

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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𝑅 = 𝐶𝐴𝑝0
2𝛥𝑛 =

𝛥𝑛

𝜏𝑛

 

Where, the minority carrier lifetime for electron is given by,  

𝜏𝑛 =
1

𝐶𝐴𝑝0
2 

The lifetime of minority carriers for Auger recombination is inversely proportional to 

the square of dopant density. 

 

2.6.4 Combined minority carrier lifetime [10,11] 

If all three recombination processes are playing a role, the effective minority carrier 

lifetime can be obtained from the following equation,  

1

𝜏
=

1

𝜏𝐵

+
1

𝜏𝑇

+
1

𝜏𝐴

 

Where, 𝜏𝐵, 𝜏𝑇, 𝜏𝐴 are minority carrier lifetime for band-to-band, trap-assisted and 

Auger recombination respectively. 

 

2.7 Working Principle of p-i-n Structured Solar Cells 

The sandwich type device structure can help to carrier collection efficiency 

significantly. This kind of structure can be classified as two types: p-i-n and n-i-p (figure 2.7). 

If the light first enters the device through 𝑛+ layer (electron transport layer or cathode) before 

getting absorbed in the absorber i-layer followed by 𝑝+ layer (hole transport layer or anode), 

then this structure is known as n-i-p structure [figure 2.7 (a)]. And if the light is first incident 

on the 𝑝+ layer (hole transport layer or anode) followed by absorber i-layer and 𝑛+ layer 

(2.44) 

(2.45) 

(2.43) 
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(electron transport layer or cathode), then this device structure is known as p-i-n structure 

[figure 2.7 (b)]. There are several choices for each of these layers as showed in figure 2.7.  

 

Figure 2.7: Structure of single junction solar cells (a) n-i-p (b) p-i-n (The figure is not 

drawn to scale) 

 

The working principle of this sandwich kind of single junction solar cell can be 

explained in figure 2.8 using p-i-n structure as an example. First, the incident photon is 

absorbed within Absorber i-Layer and generates free electrons and holes [Figure 2.8 (a)]. Then 

these photo-generated carriers will go through ambipolar transport towards absorber-transport 

layers’ interfaces. The transport layers must be chosen very carefully so that the band edges 

satisfy the required conditions to separate the photo-generate electron and holes. The n+ 

electron transport layer must have its conduction band matched with the absorber i-layer which 

allows this layer to collect electron [Figure 2.8 (b)]. At the same time, this n+ semiconductor 

must have a very high bandgap compared to the absorber i-layer which allows this layer to 

create a barrier for holes [Figure 2.8 (c)]. Thus, it collects only the electrons. On the other side, 

the p+ hole transport layer must have a valance band matched with the valance band of absorber 
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i-layer which allows it to collect holes without any significant barrier [Figure 2.8 (d)]. This 

layer must have a high bandgap so that it can block the electrons from being collected at this 

end [Figure 2.8 (e)]. The high bandgap of p+ hole transport layer also ensures that it is 

transparent for most of the photons and allows them to be absorbed in the absorber layer.   

 

Figure 2.8: Simplified band diagram to explain the working principle of a p-i-n 

structured single-junction solar cell (a) Absorption of incident photon and generation of free 

electrons and holes (b) Collection of electrons through cathode (c) Blocking holes in 

absorber-cathode interface (d) Collection of holes through anode (c) Blocking electrons in 

absorber-anode interface 

 

2.8 Shockley-Queisser (SQ) Limit 

Using the generation, recombination and transport equations developed in the previous 

sections can be used to calculate the theoretical efficiency of a solar cell. These calculations 

were done by Shockley and Queisser in 1961 [13]. While doing the calculations in their work 

they only considered absorption loss, black-body radiation loss and radiative recombination 

loss to determine maximum achievable photo conversion efficiency of solar cells. The result 

from their work of maximum achievable efficiency as a function of active layer bandgap has 

been reported in figure (2.9). 
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Figure 2.9: Schockley-Queisser limit of maximum power conversion efficiency for a 

single junction solar cell as function of absorber layer bandgap [13] 

 

Initially with increasing bandgap of the absorber semiconductor the power conversion 

efficiency increases because of decrease in thermodynamic loss. When the bandgap of the 

material is about 1.34 eV the power conversion efficiency reaches at maximum of about 34%. 

If we keep increasing the bandgap of the material beyond 1.34 eV there is significant loss in 

absorption. Thus, the power conversion efficiency decreases with increasing bandgap. 

There are several recombination losses and parasitic losses present inside a solar cell 

which results in the photo conversion lower than Schockley-Queisser limit. Considering other 

loss mechanisms, the NREL chart shows that the maximum achievable efficiency that can be 

achieved from a single junction solar cell is about 30%. Figure 2.10 different energy loss 

proportions as a function of bandgap of the material and figure 2.11 shows the actual photo 

conversion that has been achieved from different technologies.  
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Figure 2.10: Proportion of different energy loss mechanisms as a function of 

bandgap [15] 

 

 

Figure 2.11: The maximum photo conversion efficiencies achieved from different 

technologies along with the Schockley-Queisser limit [14] 

 

There are several ways to increase the photo conversion efficiency beyond Schockley-

Queisser limit such as photon up-conversion, concentrated photovoltaics etc. Multi junction or 

tandem solar cells can also be helpful to improve the photo conversion efficiency.   
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2.9 Equivalent Circuit of a Solar Cell  

The equivalent circuit of a solar cell can be represented by a single diode, a current 

source, which represents the photo-generated current, in parallel with the diode along with 

series and shunt resistance. The equivalent circuit of a solar cell using single diode has been 

showed in figure 2.12. 

 

Figure 2.12: The equivalent circuit of a solar cell using a single diode model [15] 

 

The current extracted from the solar cell through an external load can be given by the 

following equation,  

𝐼 = 𝐼𝐿 − 𝐼0 [exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 

Where, 𝐼𝐿 is the photo-generated current, 𝐼0 is the reverse saturation current of the 

diode, n is the ideality factor of the diode, 𝑅𝑠 and 𝑅𝑠ℎ are series and shunt resistance 

respectively, V is the applied voltage across the solar cell. 

To represent the solar cell more precisely along with different kinds of recombination 

in the in the bulk of it, it is necessary to use a two-diode model as showed in figure 2.13.  

(2.46) 
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Figure 2.13: The equivalent circuit of a solar cell using a two-diode model [1] 

 

Under illumination the current from the solar cell is given by,  

𝐼 = 𝐼𝐿 − 𝐼01 {𝑒𝑥𝑝 [
𝑞(𝑉 + 𝐼𝑅𝑠)

𝑘𝑇
] − 1} − 𝐼02 {𝑒𝑥𝑝 [

𝑞(𝑉 + 𝐼𝑅𝑠)

2𝑘𝑇
] − 1} −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
 

Two diodes represent two possible recombination inside the bulk of solar cell: band-

to-band and trap-assisted recombination. At low bias across the device at low level injection 

when the device is still depleted the diode current is proportional to 𝑒
𝑞𝑉

2𝑘𝑇 where the ideality 

factor of the diode is 2. At higher bias across the device with high injection level transport 

through quasi-neutral region dominates and the diode current is proportional to 𝑒
𝑞𝑉

𝑘𝑇 where the 

ideality factor of the diode is 1. 

Under illumination the photo generated current is negative until we increase the bias 

high enough to have positive current through the device. Thus, during illumination single-

diode model can be used to represent the solar cell.  

(2.47) 
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CHAPTER 3.    CHARACTERIZATION TECHNIQUES OF SOLAR CELLS 

3.1 Introduction  

To understand the operational principle of the device as well as to troubleshoot the 

problems, we need to do different electrical and optical characterizations. The basic concepts 

for different characterization techniques have been discussed in this chapter:   

 

3.2 Current-Voltage (IV) Measurement  

This is the most basic measurement to characterize solar cells where we apply voltage 

across a solar cell and measure the current through it. This measurement can be done either 

under illumination (Light IV) or in dark (Dark IV). We can interpret a lot of important 

parameters of a solar cell using these measurement techniques.  

 

3.2.1 Light IV measurement [1,3] 

The power conversion efficiency of a solar cell can be determined from light IV 

measurement. During this measurement, we apply voltage across the solar cell under 

illumination and measure the current through it. The evolution of a light IV curve with the help 

of equivalent circuit has been showed in figure 3.1. This IV curve of a solar cell is the 

superposition of the IV curve of the diode in the dark with photo-generated current.  

In dark, the IV response of a solar cell is like the IV response of a diode [figure 3.1(a)]. 

The equation of the of this IV response is given by,  

𝐼 = 𝐼0[exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] (3.1) 
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Where, 𝐼0 is the reverse saturation current of the diode, 𝑉 is the applied voltage, 𝑛 is 

ideality factor of the diode. 

 

Figure 3.1: Effect of light on Current-Voltage (IV) Characteristics of a solar cell 

along with approximated equivalent circuit (a) In dark I-V response is like a diode (b) Under 

illumination the I-V characteristics shifts as it generates power (c) The greater the 

illuminated light intensity, the greater the shift (d) The convention is to invert the current axis 

as the cell generates power [1]   

 

Under illumination, the IV response of a solar cell shifts into the fourth quadrant as 

power is generated from the cell [figure 3.1(b)] which is represented by a current source in 

parallel with the diode in the equivalent circuit. The equation of the of this IV response is given 

by,  

𝐼 = 𝐼0 [exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐼𝐿 

where, 𝐼𝐿 is photo-generated current 

(3.2) 
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 The greater the illuminated light intensity, the greater the shift of light IV curve in the 

fourth quadrant [figure 3.1(c)]. 

 

Figure 3.2: Some key parameters from the light IV response of a solar cell (a) Short-

circuit current and open-circuit voltage (b) output power as a function of applied voltage and 

defining fill factor of a solar cell [1] 

 

In convention, the current axis is inverted and represented the light IV curve in the first 

quadrant and the equation of this IV response can be given by,  



www.manaraa.com

39 

𝐼 = 𝐼𝐿 − 𝐼0 [exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] 

The basic parameters those can be extracted from the light IV curve has been showed 

in figure 3.2.  

(i) Short-Circuit Current [1]: 

The short-circuit current is defined as the maximum current that can be extracted from 

a solar cell when voltage across the device is zero. The short-circuit current depends on the 

generation and collection of photo-generated carriers. Thus, it depends on the several optical 

and electrical factors such as the incident light spectrum, absorption coefficient and thickness 

of the active layer, area of the solar cell and the collection efficiency which is dependent on 

minority carrier lifetime. The short-circuit current density is given by,  

𝐼𝑠𝑐 = 𝑞𝐴𝐺(𝐿𝑛 + 𝐿𝑝) 

Where, 𝐺 is the generation rate, 𝐿𝑛 and 𝐿𝑝 are electron and hole diffusion lengths 

respectively, A is area of the solar cell. For an ideal solar cell ignoring the resistive loss 

mechanisms, the short-circuit current is identical to the photo-generated current [1]. 

(ii) Open-Circuit Voltage [1]: 

The open-circuit voltage of a solar cell is the maximum voltage that we can achieve 

across it when the current through it is zero. The open-circuit voltage can be express by the 

following equation,  

𝑉𝑜𝑐 =
𝑛𝑘𝑇

𝑞
ln (

𝐼𝐿

𝐼0

+ 1) 

where, 𝐼𝐿 is photo-generated current, 𝐼0and 𝑛 are reverse saturation current and ideality 

factor of the diode respectively, 
𝑘𝑇

𝑞
 is the thermal voltage. 

(3.3) 

(3.4) 

(3.5) 
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The reverse saturation current depends on recombination inside the bulk active layer. 

𝑉𝑜𝑐 is also a function of the carrier concentration and is given by the following equation [1,4],  

𝑉𝑜𝑐 =
𝑘𝑇

𝑞
𝑙𝑛 {

(𝑁𝐴 + 𝛥𝑛)𝛥𝑛

𝑛𝑖
2 } 

Where, 𝑁𝐴 is the doping concentration, 𝑛𝑖 is the intrinsic carrier concentration and 𝛥𝑛 

is excess carrier concentration. 

(iii) Fill Factor [1]: 

Both at open-circuit and short-circuit conditions the power extracted from the solar cell 

is zero. Figure 3.2(b) shows the electric power, 𝑃 = 𝑉𝐼 as a function of applied voltage and it 

suggests that if we extract power at a certain voltage and current, we can extract the maximum 

power from the solar cell. The fill factor can be defined as the ratio between the maximum 

power from the solar cell to the product of open-circuit voltage and short-circuit current. The 

fill factor (FF) of a solar cell has been illustrated in figure 3.2(b) and is given by,  

𝐹𝐹 =
𝑉𝑚𝐼𝑚

𝑉𝑜𝑐𝐼𝑠𝑐

 

Where, 𝑉𝑚 and 𝐼𝑚 are voltage and current at maximum power point respectively 

 The maximum fill factor of a solar cell can be given by the following equation [1,5],  

𝐹𝐹 =
𝑣𝑜𝑐 − 𝑙𝑛(𝑣𝑜𝑐 + 0.72)

𝑣𝑜𝑐 + 1
 

Where, 𝑣𝑜𝑐 is the normalized 𝑉𝑜𝑐 and is given by,  

𝑣𝑜𝑐 =
𝑉𝑜𝑐

𝑛𝑘𝑇
𝑞⁄

 

 

(3.6) 

(3.7) 

(3.8) 

 

(3.9) 
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(iv) Power Conversion Efficiency [1]: 

The power conversion efficiency is the most common parameter that can be used to 

compare one solar to the other and can be calculated as the ratio between the maximum power 

that can be extracted from a solar cell to the input power. The power conversion efficiency,  

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛

 

𝜂 =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑖𝑛

 

The input power for the standard AM1.5 spectrum is 100 𝑚𝑊/𝑐𝑚2. 

 

Figure 3.3: Light IV curve of an ideal solar cell (Blue curve) and light IV response 

for a practical solar cell with parasitic resistance [1,2] 

 

The light IV measurement can also be used to determine the parasitic resistances of a 

solar cell. The fill factor of the solar cell decreases with increasing series resistance and 

decreasing shunt resistance. Ideally, we want the series resistance to be zero and shunt 

resistance to be infinite. Figure 3.3 shows the comparison of two light IV curves: one in ideal 

condition and the other with non-zero series and non-infinite shunt resistance. The series 

(3.10) 

 

(3.11) 
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resistance of a solar cell can be determined from the slope of the light IV curve when the 

current through the device is zero (open-circuit condition),  

𝑅𝑆 =
1

𝜕𝐼
𝜕𝑉⁄

|

𝑉=𝑉𝑜𝑐

 

The shunt resistance of a solar cell can be determined from the slope of the light IV 

curve when the voltage across the device is zero (short-circuit condition),  

𝑅𝑆𝐻 =
1

𝜕𝐼
𝜕𝑉⁄

|

𝑉=0

 

 

3.2.2 Dark IV measurement [1,3] 

Dark IV can be used to understand the recombination mechanism in a solar cell. During 

this measurement, the current through the device is measured by applying voltage across the 

solar cell in dark. The dark IV can be understood by a two-diode model with equivalent circuit 

in figure 3.4. 

 

Figure 3.4: Equivalent circuit to understand the dark IV 

 

The dark current is given by the following equation when the photo-generated current 

is zero,  

(3.12) 

 

(3.13) 
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𝐼 = 𝐼01 {𝑒𝑥𝑝 [
𝑞(𝑉 + 𝐼𝑅𝑠)

2𝑘𝑇
] − 1} − 𝐼02 {𝑒𝑥𝑝 [

𝑞(𝑉 + 𝐼𝑅𝑠)

𝑘𝑇
] − 1} −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 

The dark IV curve is plotted in a semilog curve as showed in figure 3.5. 

 

Figure 3.5: Semilog plot of a dark IV curve of a solar cell where different regions 

indicate different loss mechanisms from the p-n junction [1]   

 

When a lower bias (0-0.1V) is applied across the solar cell the dark IV curve is 

dominated by the shunt current. Unwanted shunt path (for example, pinhole in the active layer) 

contributes to the shunt current. For a solar cell, it is excepted to have shunt resistance as high 

as possible to have shunt current as low as possible. If we keep increasing the voltage across 

the diode, the current increases exponentially as a function of applied voltage. This exponential 

curve can be fitted with two linear regions in the semilog plot. The slope of these two 

exponential regimes are called ideality factors which defines recombination mechanisms in 

these two regimes. In the lower voltage regime (0.1-0.45V) the ideality factor in 2 which 

(3.14) 

 



www.manaraa.com

44 

indicates the recombination in depletion region. The factor 𝐼01 is a function of minority carrier 

lifetime in the depletion region which is given by,  

𝐼01 =
𝑞𝐴𝑛𝑖𝑤

′

2𝜏𝑑

 

Where, 𝐴 is the area of the solar cell, 𝑛𝑖 is the intrinsic carrier concentration, 𝑤′ is 

effective depletion width, 𝜏𝑑 is carrier lifetime in depletion region. 

At higher voltage regime (0.45-0.6V) the second exponential term dominates with an 

ideality factor of 1. This term is dominated by recombination in neutral region. The factor 𝐼02 

is dependent on electron and hole diffusion lengths and is given by,  

𝐼02 = 𝑞𝐴 [
𝐷𝑛𝑛𝑝0

𝐿𝑛

+
𝐷𝑝𝑝𝑛0

𝐿𝑝

] 

Where, 𝐴 is the area of the solar cell, 𝐷𝑛 and 𝐷𝑝 are diffusion coefficients of electrons 

and holes respectively, 𝐿𝑛 and 𝐿𝑝 are minority carrier diffusion lengths of electrons and holes 

respectively, 𝑛𝑝0 and 𝑝𝑛0 are minority carrier concentrations of electrons and holes 

respectively in the neutral region. 

At higher voltage regime, the dark current is dominated by the series resistance as the 

voltage drop across the series resistance becomes significant. In this regime, the dark IV 

response is no-longer exponential. So, besides the recombination mechanisms we can also 

extract the series and shunt resistance of the solar cell. 

The ideality factors can be deviated from their ideal values if other recombination 

mechanisms are also contributing. For example, the Auger recombination has a characteristic 

ideality factor of 
2

3
 and high carrier injection results in a characteristic ideality factor of 2 [1]. 

 

(3.15) 

 

(3.16) 
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3.3 Quantum Efficiency [1,6] 

External Quantum efficiency is defined as the ratio between the number of carriers 

collected to the number of photons at given wavelength of incident photon. Thus, quantum 

efficiency is expressed as a function of wavelength and is given by,  

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜆) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 (𝜆)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝜆)
 

In other words, the external quantum efficiency is the measure of how efficiently a 

solar cell and absorb incident photon as well as collect the generated carriers. If all the incident 

photons are absorbed and all the photo-generated carriers are collected the quantum efficiency 

at that wavelength is 100%. The quantum efficiency as a function of incident photon 

wavelength for an ideal and a practical solar cell has been showed in figure 3.6. The “external 

quantum efficiency” of a solar cell includes reflection and transmission as optical losses. If we 

the quantum efficiency is calculated with photons which are not either transmitted or reflected, 

it is called “internal quantum efficiency”. 

The external quantum efficiency of a practical solar cell showed in figure 3.6 can be 

divided into three regimes based on the incident wavelength: 

(i) At very low wavelength (< 300nm) when the incident photon has very high energy the 

number of photons in AM1.5 spectrum is very low. Also, these high energy photons 

will also get absorbed in the substrate and transport layer (for instance, for organic and 

perovskite solar cells on glass substrate the incident photons with wavelength less than 

300nm will get absorbed by glass as well as transport layer). As a result, the quantum 

efficiency is almost zero in low wavelength regime. 

(3.17) 
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(ii) For higher wavelength (> 1100 nm for crystalline-silicon) when the incident photon 

energy is higher the bandgap of the absorber layer, no light will be absorbed. As a 

result, the quantum efficiency in this regime is zero. 

 

Figure 3.6: The quantum efficiency of a silicon solar cell (black curve) and an ideal 

solar cell (brown curve) simulated with solar spectrum AM1.5 [1] 

 

(iii) In between these two regimes the external quantum efficiency is affected by surface 

and bulk recombination. As these recombination mechanisms affect the collection 

probability of photo-generated carriers, the quantum efficiency also decreases from 

the ideal value of 1. For instance, blue photons have higher energy and the absorption 

coefficient is also higher. Thus, most of the blue photons get absorbed very close to 

the front surface. The higher the surface defect density near the front surface, the more 

the quantum efficiency will suffer for incident of blue photons. By doing passivation 

at front surface this problem can be mitigated. Again, the green photons have moderate 

energy and they mostly will get absorbed in the bulk of the solar cell. Thus, the 
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collection efficiency in this regime will be affected by low diffusion lengths of photo-

generated electrons and holes. The lower the carrier diffusion lengths, the lower the 

quantum efficiency will be in this regime. Similarly, for incident of red photons which 

have lower energy will get absorbed close to the rear surface. Thus, the higher the 

surface defect density at rear surface, the lower the quantum efficiency at this regime. 

The quantum efficiency in this regime can be improved by rear surface passivation.  

 

The internal quantum (IQE) efficiency for a finite solar cell is given by,  

𝐼𝑄𝐸 =
𝛼2𝐿2

𝛼2𝐿2 − 1
[1 −

1

𝛼𝐿
{

𝑆𝐿
𝐷

{𝑐𝑜𝑠ℎ (
𝑡
𝐿

) − 𝑒−𝛼𝑡} + 𝑠𝑖𝑛ℎ (
𝑡
𝐿

) + 𝛼𝐿𝑒−𝛼𝑡

𝑆𝐿
𝐷

𝑠𝑖𝑛ℎ (
𝑡
𝐿

) + 𝑐𝑜𝑠ℎ (
𝑡
𝐿

)
}] 

Where, 𝛼 is the absorption coefficient, 𝑆 is the surface recombination velocity, 𝐿 is 

minority carrier diffusion length, 𝐷 is diffusion coefficient, 𝑡 is thickness of active layer. 

Usually, at high enough energy the absorption coefficient is high and 𝑡 ≫ 𝐿, 𝛼𝐿 ≫ 1 

the equation 3.18 can be reduced to,  

𝐼𝑄𝐸 =
𝛼𝐿

1 + 𝛼𝐿
 

1

𝐼𝑄𝐸
= 1 +

1

𝛼𝐿
 

So, from the slope of 1 𝐼𝑄𝐸⁄  vs 1 𝛼⁄  plot the minority carrier diffusion length can be 

determined. 

The short-circuit current can be calculated by integrating the product of the internal 

quantum efficiency and photon flux,  

(3.18) 

 

(3.19) 

 

(3.20) 
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𝐽𝑠𝑐 = 𝑞 ∫ 𝐼𝑄𝐸(𝜆)Г(𝜆)𝑑𝜆
∝

0

 

Where, Г(𝜆) is the photon at a wavelength of 𝜆. 

 

 

Figure 3.7: Quantum efficiency measurement setup. D.U.T is the sample or reference 

solar cell [6] 

 

The quantum efficiency measurement setup has been showed in figure 3.7. White light 

from halogen bulk passes through a monochromator. Using diffraction grating inside the 

monochromator the light of desired wavelength can be achieved as it depends on the incident 

angle of white light. The rest of the light is filtered from the desired wavelength using a slit at 

the end of the monochromator. Then this D.C. light is converted into a A.C. light source using 

an optical chopper with frequency of 13 Hz. Then the lens collimates the incident light which 

then passes through optical filters to remove harmonics other than the desired wavelength. 

Using a mirror at 45𝑜 angle this monochromatic beam is incident on the sample and the sample 

is connected to probes for collecting signal. This signal is then fed into a preamplifier. Then a 

(3.21) 
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lock-in amplifier has been used to filter the unwanted signal of frequencies other than chopper 

frequency, as this lock-in amplifier is synchronized with the chopper frequency. Then the 

response from the sample is read using the lock-in amplifier. A D.C. voltage source allows to 

measure the quantum efficiency at different bias voltage. Whereas a D.C. light source allows 

us to measure with light bias [6].    

During this measurement, the photon flux of the beam is measured using a reference 

cell. The quantum efficiency at different wavelength is known for this reference solar cell. 

Signal for both reference and the sample is measured and the quantum efficiency of the sample 

can be determined from the following equation [6],  

𝑄𝐸 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒(𝜆) =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑆𝑎𝑚𝑝𝑙𝑒 (𝜆)

𝑆𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝜆)
𝑥

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑒𝑙𝑙

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
𝑥𝑄𝐸 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆) 

 

3.4 Sub-gap Quantum Efficiency 

Because of midgap and tail defect states the quantum efficiency doesn’t decrease to 

zero instantaneously for energy of photons below the bandgap because there will be absorption 

through the defect states [Figure 3.8]. Using quantum efficiency precisely in this regime we 

can measure the distribution midgap density of states in a semiconductor. This method is 

known as “Sub-gap Quantum Efficiency”. Figure 3.8 show the midgap and tail density of states 

where tail states are exponentially distributed and midgap states have Gaussian distribution. 

Knowing the density of states helps us to understand the recombination mechanisms inside the 

active layer. That is why sub-gap quantum efficiency is a very powerful tool for diagnosis of 

solar cells. The measurement setup is similar to quantum efficiency measurement as shown in 

figure 3.7. 
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Figure 3.8: Density of states in a semiconductor. Tail states are exponentially 

distributed and midgap states have Gaussian distribution [7] 

 

 

Figure 3.9: Transitions through midgap and tail defect states [2] 

 

In the region where the absorption coefficient decreases exponentially due to 

exponentially distributed tail states, the absorption coefficient is given by [6,8,9],  

𝛼 = 𝛼0 ∗ 𝑒𝑥𝑝 [−
𝐸𝑔 − ℎ𝜐

𝐸𝑢
] (3.22) 
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Where, 𝛼0 is the absorption coefficient in the band-edge, 𝐸𝑔 is bandgap of the material, 

ℎ𝜐 is photon energy, 𝐸𝑢 is Urbach energy. The Urbach energy is the measure of how broadly 

the tail states are distributed inside the bandgap of the material. 

 

Figure 3.10: Sub-gap QE of perovskite solar cell [2] 

 

Sub-gap quantum efficiency of a perovskite solar cell has been showed in figure 3.10. 

When the incident photon energy drops below the bandgap of perovskite (~1.6 eV), there is an 

exponential decrease in normalized QE. This regime corresponds to the absorption through tail 

states. We can calculate the Urbach energy from the slope of this curve in this regime. The 

Urbach energy of perovskite is about 16 meV which is lower than Urbach energy in organic 

solar cells (~50 meV). That means the spreading of tail states is lower in perovskite compared 

to organic solar cells which is a result from the perovskite being more crystalline. When the 

incident photon energy decreases even further the absorption is dominated by midgap state 

transitions [2]. 
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3.5 Capacitance Vs Voltage (CV) 

Capacitance-Voltage measurement is a very powerful tool to measure the dopant 

density of a pn junction solar cell. Band diagram of a Schottky diode has been showed in figure 

3.11. In that figure, 𝐸𝐶 and 𝐸𝑉 are energy levels of conduction band and valance band 

respectively, 𝐸𝐹 is the Fermi energy level, 𝑊𝑑 is the depletion width of the pn junction and 𝑉𝑏𝑖 

is the built-in potential. 

 

Figure 3.11: Band diagram of a Schottky PN junction [2] 

 

The depletion width of the one-sided (𝑝 − 𝑛+) junction in figure 3.11 is given by,  

𝑊𝑑 = √
2𝜖(𝑉𝑏𝑖 − 𝑉)

𝑞𝑁𝐴

 

The junction capacitance is given by,  

𝐶 =
𝜖𝐴

𝑊𝑑
= 𝐴√

𝑞𝜖𝑁𝐴

2(𝑉𝑏𝑖 − 𝑉)
 

(3.23) 

 

(3.24) 
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⇒
1

𝐶2
=

2(𝑉𝑏𝑖 − 𝑉)

𝑞𝜖𝑁𝐴𝐴2
 

Here, 𝜖 is dielectric constant of the semiconductor, 𝐴 is the area of the cell and 𝑉 is 

applied voltage across the junction. From equation 3.25 if we plot 1 𝐶2⁄  as a function of applied 

voltage 𝑉, it can be fitted with a straight line where slope is inversely proportional to the dopant 

density, 𝑁𝐴 and the intercept is proportional to be built-in potential, 𝑉𝑏𝑖 of the pn junction. The 

plot of 1 𝐶2⁄  vs 𝑉 for an ideal pn junction is showed in figure 3.12. 

 

Figure 3.12: Ideal Capacitance-Voltage profile for an ideal one-sided 𝑝 − 𝑛+ 

junction with acceptor dopant density 𝑁𝐴 and built-in potential 𝑉𝑏𝑖 [2] 

 

3.6 Capacitance Vs Frequency (CF) 

By varying the frequency of the AC signal while measuring capacitance we can 

measure the density of states at different energy levels within the bandgap of a semiconductor. 

(3.25) 
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The density of states will help us to understand the recombination mechanism of a solar cell 

and the loss of photo-generated carriers. 

If there is a defect state at energy level 𝐸𝑇 within the bandgap, then the emission rate 

from these trap states to the conduction band can be expressed as [2,12,13],  

𝑒𝑛 = 𝜐0 𝑒𝑥𝑝 [−
𝐸𝐶 − 𝐸𝑇

𝑘𝑇
] 

Where, 𝜐0 is the attempt-to-escape frequency (ATEF), 𝐸𝐶 and 𝐸𝑇 are the energy levels 

for conduction band and trap states respectively.  

If an AC bias is applied across a solar cell, whether the trapped electrons in the defect 

states can respond to the applied signal depends or not depends on the energy level of the 

trapped states and the AC signal frequency. Equation 3.26 shows that as the trap state goes 

deeper within the bandgap, the electron emission rate of the trap state decreases exponentially.  

 

Figure 3.13: Higher emission rate of shallow trap allows them to contribute to the 

capacitance at both high and low frequencies. As deeper traps have low emission rates, they 

only respond to lower frequencies [6] 

 

Figure 3.13 shows how traps at different energy levels contribute to the measured 

capacitance as function of applied AC signal frequency. If the emission rate of electrons for a 

trap state is higher than the applied signal frequency, those traps can respond to the applied 

external AC signal and leads to increase in measured capacitance of the device. If the emission 

(3.26) 
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rate is lower than the applied signal frequency, those traps will not respond to the applied signal 

and will not contribute to the measured capacitance. In other words, from equation 3.26 as the 

shallow traps have higher emission rate, they can respond to both high and low frequencies of 

the applied external signal. Thus, the shallow traps contribute to the capacitance measured with 

either low or high frequencies. But the deeper the traps are inside the bandgap, the lower the 

emission rate they have. These deeper traps cannot charge or discharge following the external 

AC signal if the frequency of this signal is higher than the emission rate of these traps. Thus, 

the deeper traps will respond to only the lower frequencies and will contribute to the measured 

capacitance. The density of the traps can be determined from this capacitance vs frequency 

measurement, as the density of traps will be proportional to the differential of capacitance with 

frequency.    

The density of states can be calculated using the following equation [2,6],  

𝑁𝑇(𝐸𝜔) = −
𝑉𝑏𝑖

𝑞𝑊𝑑

𝑑𝐶

𝑑𝜔

𝜔

𝑘𝑇
 

Where, 𝑉𝑏𝑖 is the built-in potential, 𝑊𝑑 is the depletion width, 𝐶 is the measured device 

capacitance, 𝜔 = 2𝜋𝑓 is the angular frequency of applied signal, 𝐸𝜔 is the “probing depth” 

which can be determined from the demarcation energy given by,  

𝐸𝜔 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝜔0

𝜔
) 

Where, 𝜔0 = 2𝜋𝜐0 is angular attempt-to-escape frequency (ATEF). The traps with 

energy lower than this demarcation energy will respond and contribute to the capacitance 

measured. By reducing the applied signal frequency, the demarcation energy can be increased 

which will allow deeper traps to respond and will increase the measured capacitance.  

(3.27) 

 

(3.28) 
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The attempt-to-escape frequency can be expressed as,  

𝜐0 = 𝑁𝐶𝑣𝑡ℎ𝜎𝑛 

Where, 𝑁𝐶 is the effective density of states in the conduction band, 𝑣𝑡ℎ is the thermal 

velocity and 𝜎𝑛 is the electron capture cross-section of the trap.  

A typical capacitance vs frequency response and measured trap density of traps from 

this response has been showed in figure 3.14. 

 

Figure 3.14: (a) Capacitance vs Frequency response of a perovskite solar cell (b) 

Trap density of states calculated from the CF response. Perovskite has a peak density of 

states at about 0.66 eV below the conduction band [2] 

 

Both the effective density of states (𝑁𝐶) and thermal velocity (𝑣𝑡ℎ) are dependent on 

temperature as,  

𝑁𝑐 ∝  𝑇3 2⁄ , 𝑣𝑡ℎ 𝛼 𝑇1 2⁄   

Which gives the attempt-to-escape frequency is proportional to the square of 

temperature,  

𝜐0  ∝  𝑇2 

Thus, equation 3.26 can be expressed as a function of temperature [2,6],  

(3.29) 

 

(3.30) 

 

(3.31) 
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𝑙𝑛 (
𝑒𝑛

𝑇2
) = ln(𝜉) −

𝐸𝐴

𝑘𝑇
 

Where, 𝐸𝐴 = 𝐸𝐶 − 𝐸𝑇 is the activation energy of the trap states and 𝜉 is the proportional 

constant in equation 3.31. 

From the Arrhenius plot 𝑙𝑛 (
𝑒𝑛

𝑇2) vs 
1

𝑘𝑇
 the intercept gives the attempt-to-escape 

frequency and the slope gives the activation energy. So, by measuring capacitance vs frequency 

at different temperatures we can measure the attempt-to-escape frequency and activation 

energy of trap states of a material. This characterization technique is known as Capacitance-

Frequency-Temperature (CFT) measurement. 

 

Figure 3.15: Capacitance vs Frequency plotted as 𝑓
𝑑𝐶

𝑑𝑓
 as a function of frequency 

measured at different temperature [14] 

 

Figure 3.15 shows the capacitance vs frequency measurement of a perovskite solar cell 

at different temperature and plotted as 𝑓
𝑑𝐶

𝑑𝑓
 vs 𝑓. The capacitance increases with increase in 

temperature as the emission rate of the trap increases at higher temperature. The peaks are 

(3.32) 

 



www.manaraa.com

58 

related to the emission rates at different temperature. The Arrhenius plot of  ln (
𝑓𝑝𝑒𝑎𝑘

𝑇2 ) vs 1/𝑘𝑇 

has been showed in figure 3.16. The slopes in figure 3.16 indicate that perovskite has trap 

energies of 0.66 eV and 0.24 eV below the conduction band. The attempt-to-escape frequency 

that has been calculated from the peaks for the dominant trap is 2 𝑥 1011𝑠−1.   

 

 

Figure 3.16: Arrhenius plot of peak frequencies in figure 3.15 as a function of 1/kT. 

The attempt-to-escape frequency is about 2 𝑥 1011𝑠−1 and activation energies of traps are 

0.24 eV and 0.66 eV below the conduction band [14] 

 

3.7 Photon-induced Degradation 

Photon-induced degradation can be used to measure the change in basic photovoltaic 

characteristics (short-circuit current, open-circuit voltage, Fill factor and power conversion 

efficiency) as discussed in section 3.2 while the solar cell is under continuous illumination for 

several hours or days. This characterization technique helps us to understand the degradation 

mechanism of a solar cell influenced by incident photons. This is a very important 

characterization technique for perovskite and organic solar cells as these devices show 

significant degradation in performance under continuous illumination. During this 
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measurement, we measure the photovoltaic parameters in a periodic interval usually under 

illumination at one-sun intensity and calculate the normalized degradation of these 

photovoltaic parameters. Figure 3.17 shows a typical photon-induced degradation of a 

perovskite solar cell illuminated under one-sun intensity for 100 hours.  

 

Figure 3.17: Photon-induced degradation of a perovskite solar cell under one-sun 

intensity (AM1.5). The photovoltaic parameters were measured for 100 hours at 10 minutes 

interval [15] 

 

The perovskite and organic solar cells are also known to degrade in presence of oxygen 

and moisture. Encapsulating the device will help to eliminate the effect of moisture and 

oxygen, this encapsulation layer will trap heat during illumination which may also accelerate 

the degradation of these devices. So, to study the effect of photon only in degradation we need 

to get rid of moisture and oxygen from the degradation chamber rather than encapsulating the 

device. We have two degradation setups in our laboratory which help us to get inert 

environment during photon-induced degradation study (Figure 3.18): Environmental chamber 

and Glovebox.   

Figure 3.18 (a) shows the schematic diagram and figure 3.18 (b) shows the setup of the 

environmental degradation chamber. In this setup, we need to expose the chamber in 
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atmosphere while load the sample. Then to remove the moisture and oxygen from the chamber 

we evacuate it to a very low pressure (~10−6𝑇). For this purpose, the chamber is connected to 

a roughing pump and a turbo pump which is supported by a backing pump. The chamber is 

sealed with a vacuum-sealed lid. After evacuating the chamber, we can fill it with pure 

nitrogen. To make sure the temperature remains constant we have a fan connected inside the 

chamber. The chamber is sealed so that there is no air leakage from the atmosphere.  

 

 

Figure 3.18: Photon-induced degradation setup (a) Schematic-diagram of 

environmental chamber setup (b) Environmental chamber (c) Degradation chamber inside 

glove-box [15] 

 

Figure 3.18 (c) shows the setup inside glovebox to measure the photon-induced 

degradation. An inert nitrogen environment is always maintained inside a glovebox with both 
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moisture and oxygen less than 0.1 ppm. The samples are transferred trough a transfer chamber 

which can be purged with pure nitrogen before transferring inside the glovebox.  

Both the systems can be maintained in a complete inert environment during the photo-

degradation study and a transparent quartz window has been used for illumination from a solar 

simulator on the sample. Quartz window has been used to ensure minimum absorption of the 

incident light. Both systems have SMU and LCR meter connected from outside the chamber. 

The SMU is used to measure the basic photovoltaic parameters (short-circuit current, open-

circuit voltage, fill factor and power conversion efficiency) and LCR meter is used to measure 

the capacitance vs voltage and capacitance vs frequency profile of the solar cell.  

 

Figure 3.19: Spectrum of the ABET 105000 (Black curve) compared with standard 

AM1.5 spectrum (Blue curve) [15] 

 

For the light source, we have used a ABET 105000 solar simulator to obtain the full 

solar spectrum of AM1.5. The spectral irradiance from the ABET 105000 solar simulator 

compared with the standard AM1.5 solar irradiance has been showed in figure 3.19. A standard 

silicon solar cell has been used to ensure the intensity of the solar simulator. 
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CHAPTER 4.    PEROVSKITE SOLAR CELLS 

4.1 Introduction 

As discussed in chapter 1, to make solar energy a prime source of energy the cost must 

be reduced significantly. Silicon is still the most popular material for photovoltaics. Although 

the cost of silicon solar panels has reduced significantly over the last few decades, we need to 

find some new photovoltaic materials which would lower the cost of solar panels as well as 

increase the power conversion efficiency.   

Perovskite solar cells can meet both these criteria. Low material cost, ease of 

fabrication and easy roll-to-roll processing makes perovskite solar cells very exciting choice. 

Also, various research groups have already reported to have power conversion efficiencies 

more than 20% [1].  Figure 4.1 shows the power conversion efficiency evolution of perovskite 

solar cells compared with other solar technologies. 

 

Figure 4.1: Evolution of power conversion efficiency of perovskite solar cells 

compared with other solar technologies [3,4] 
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Perovskite also has a bandgap pf 1.6 eV which makes it a very exciting choice as a high 

bandgap cell. Figure 4.2 shows the contour plot of Shockley–Queisser limit for a tandem solar 

cell, 

 

Figure 4.2: (a) Series-connected tandem solar cell (b) Maximum efficiency of a two-

junction tandem solar cell [2] 

 

The maximum efficiency that can be obtained from two-junction series connected solar 

cell is 47%. At this peak efficiency, the top cell has a bandgap of 1.63 eV and the bottom cell 

has a bandgap of 0.96 eV [2]. Perovskite can be used as a top cell where we don’t have a 
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material at 0.96 eV. But, crystalline silicon or CIGS (bandgap of about 1.1 eV) is closer to 0.96 

eV. With perovskite as top cell and c-Si or CIGS as bottom cell can give a maximum theoretical 

efficiency of about 44%. Thus, perovskite as a photovoltaic material has huge potential not 

only as a low-cost material but also to obtain a high power-conversion efficiency.   

 

4.2 Perovskite 

Perovskite is a crystal structure with a general crystal structure 𝐴𝐵𝑋3, where A is a 

cation with +1 vacancy of electron, B is a also a cation but with +2 vacancies and X is an anion 

(either halogen or oxygen). Figure 4.3 shows a generalized lattice structure of perovskite. 

 

Figure 4.3: Lattice structure of Perovskite (𝐴𝐵𝑋3) [5] 

 

To form perovskite, the ionic radii of A, B and X must satisfy the following tolerance and 

octahedral factors [6],  

Tolerance factor, 𝑡 =  
𝑅𝐴+𝑅𝑋

√2(𝑅𝐵+𝑅𝑋)
 and 0.81 < 𝑡 < 1.11 (4.1) 
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Octahedral factor, µ =
𝑅𝐵

𝑅𝑋
 and 0.44 <  µ < 0.9 

Where, 𝑅𝐴, 𝑅𝐵 and 𝑅𝑋 are ionic radii of A, B and X respectively. 

     
Figure 4.4: Material combinations for lead-halide perovskite which satisfy the tolerance and 

octahedral factor limits as described in equation 4.1 and 4.2 [5] 

 

Figure 4.4 shows combination of different materials which satisfy the necessary 

tolerance and octahedral conditions to form perovskite. In this figure, A as +1 cation can be: 

MA is methylammonium (𝐶𝐻3𝑁𝐻3
+), EA is ethylammonium (𝐶𝐻3𝐶𝐻2𝑁𝐻3

+), FA is 

formamidinium (𝑁𝐻2𝐶𝐻 = 𝑁𝐻3
+) or Cesium (Cs). B as +2 cation can be: Lead (Pb) or Tin 

(Sn). X is a halide anion: Iodine (I), Chlorine (Cl) or Bromine (Br).  

Although the use of perovskite as LEDs and thin-film transistor was discovered several 

decades ago [7,8,11], it was Miyasak’s group who first demonstrated the use of perovskite for 

photovoltaic application in 2006 with a power conversion efficiency of 2.2%. They have used 

perovskite with 𝐶𝐻3𝑁𝐻3𝑃𝑏𝐵𝑟3 as absorbing material [9]. The same group in 2009 showed an 

increase in power conversion efficiency to 3.8% by replacing Bromine with Iodine as 

𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 [10]. Then different research groups started optimizing perovskite solar cells by 

(4.2) 
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using different transport layers. In 2011, it was Prak’s group who optimized it using 𝑇𝑖𝑂2 as 

electron transport layer and achieved a power-conversion efficiency of 6.5% [12]. Park’s and 

Grätzel’s group in 2012 used spio-MeOTAD as hole-transport layer and achieved a power-

conversion efficiency of about 9.7% [13]. In 2013, Seok’s group achieved a power-conversion 

efficiency of about 12.3% using mix-halide perovskite [14]. Again in 2013, Grätzel’s group 

reported to achieve power-conversion efficiency more than 15% [15]. In the same year, 

Snaith’s group first was the first to deposit perovskite using vapor deposition [16]. Soon after 

that several groups have reported to achieve power-conversion efficiency more than 20% 

[1,17,18]. 

 

4.3 Properties of Perovskite 

To understand the carrier transport and device degradation mechanism as well as 

optimize the cell efficiency we need to know the electronic and optical properties of the film.  

 

4.3.1 Absorption coefficient, α 

The absorption coefficient is a very important characteristic for an absorber layer. The 

higher the absorption coefficient the thinner the absorber layer we need to absorb incident light 

effectively. Figure 4.5 shows the comparison of absorption coefficient at different wavelengths 

among different photovoltaic materials. This figure suggests that perovskite has absorption 

coefficient (~105 − 106 𝑐𝑚−1) significantly higher than crystalline silicon. That means only 

about 100 nm – 1 µm of perovskite film is enough to absorb most of the incident photons 

efficiently.  
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Figure 4.5: Comparison of absorption coefficient at different wavelengths among 

different photovoltaic materials [19] 

 

4.3.2 Bandgap, 𝑬𝒈 

Bandgap is a very important parameter for a photovoltaic material, because according 

to Shockley–Queisser limit the maximum theoretical efficiency that can be achieved is 

dependents on bandgap of the material. Perovskite is a direct bandgap material. The bandgap 

can be found from the “Tauc plot” of 𝛼2 𝑣𝑠 ℎ𝜐. We can measure quantum efficiency and use 

it instead of the absorption coefficient, because for energy closer to the bandgap the quantum 

efficiency can be expressed as [2],  

𝑄𝐸 (𝜆) = 𝑐𝛼(𝜆)𝑡 

Where, 𝑡 is the thickness of the absorbing layer, 𝛼 is the absorption coefficient at 

incident wavelength of 𝜆 and c is a constant. 

(4.3) 
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Figure 4.6: (𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑥 𝐸𝑛𝑒𝑟𝑔𝑦)2 𝑣𝑠 𝐸𝑛𝑒𝑟𝑔𝑦 plot to calculate the 

bandgap of perovskite. It indicates a bandgap of about 1.58 eV [20] 

 

Figure 4.6 shows (𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑥 𝐸𝑛𝑒𝑟𝑔𝑦)2 𝑣𝑠 𝐸𝑛𝑒𝑟𝑔𝑦 plot to calculate 

the bandgap of perovskite. This figure shows that the bandgap of perovskite is about 1.58 eV. 

According to the Shockley–Queisser limit the maximum efficiency that can be obtained from 

a single junction perovskite solar cell is 31%.  The maximum efficiency that can be obtained 

from a double-junction tandem solar cell as perovskite as high bandgap cell and either c-Si or 

CIGS as low bandgap cell is about 44 %. So, perovskite can give a huge boost in power 

conversion efficiency.  

Hoke et al. showed an interesting aspect of perovskite in 2015 [21]. They showed that 

for a mixed halide perovskite the bandgap can be varied by changing the relative composition 

of Iodine and Bromine. The general formula of this mixed halide perovskite can be expressed 

as 𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3−𝑥𝐵𝑟𝑥. By varying the relative composition between Iodine and Bromine the 

bandgap of perovskite can be varied from about 1.55 eV to about 2.20 eV (as showed in Figure 

4.7). 
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Figure 4.7: Absorption coefficient of mixed-halide perovskite with different relative 

composition of Iodine and Bromine [21] 

 

4.3.3 Diffusion length  

Perovskite is known to have very high carrier diffusion lengths. Several groups have 

reported that the diffusion length is the order of micro-meters [22,23,24]. 24. La-o-vorakiat et 

al. have measured the diffusion length of carriers at different temperatures by using of time-

resolved terahertz spectroscopy (Figure 4.8). They revealed that the diffusion length can 

exceed 1 µm. The diffusion length at room temperature can vary from the one measured at low 

temperature, which suggests the change is recombination mechanism with change in 

temperature [24]. Several research groups [22,23,25] have reported that perovskite has very 

high carrier mobility and carrier lifetime, which results in longer diffusion length and higher 

collection efficiency. 
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Figure 4.8: Carrier diffusion length in perovskite at different temperatures [24] 

 

4.3.4 Defect density 

The density of defects inside the bandgap of a photovoltaic material is a very important 

factor, as the recombination mechanism depends on the trap density of states. Figure 4.9 shows 

the sub-gap quantum efficiency measurement of a perovskite solar cell and the calculated 

Urbach energy is about 15 meV which is lowes than a-Si and organic materials (~50 meV). 

This means perovskite has better crystallinity. 
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Figure 4.9: Sub-gap quantum efficiency of perovskite solar cell. The calculated 

Urbach energy is about 15 meV [26] 

 

 

Figure 4.10: Arrhenius plot using Capacitance-Frequency-Temperature (CFT) 

measurement shows two defect levels: (i) shallower traps have activation energy of about 

0.24 eV and (ii) deeper traps have activation energy of about 0.66 eV [20] 

 

Mehran et al. by using Capacitance-Frequency-Temperature (CFT) measurement 

techniques showed that there are two levels of defect within the bandgap of perovskite as 
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showed in the Arrhenius plot in figure 4.10 [20]. The shallower trap level has an activation 

energy of about 0.24 eV and the deeper trap level has activation energy of about 0.66 eV. And 

the attempt-to-escape frequency (ATEF) measured from this measurement is 2𝑥1011 𝐻𝑧 at 

room temperature. They have also measured the trap density of states (t-DOS) profile using 

the Capacitance vs Frequency measurement (Figure 4.11). The t-DOS in figure 4.11 (a) shows 

that the midgap states have a peak at 0.66 eV below the conduction band which is also 

consistent with the Arrhenius plot at figure 4.10. The t-DOS of the midgap state can be fitted 

with a Gaussian distribution as showed in figure 4.11 (b).  

 

Figure 4.11: Capacitance vs Frequency profile of perovskite solar cell (a) Density of 

states (t-DOS) distribution within the bandgap of perovskite (b) t-DOS of the midgap state 

fitted by Gaussian distribution [20] 

 

4.3.5 Dielectric constant 

As discussed in chapter 2, whether a photon-absorption event in a material will result 

in generation of exciton or free electron or hole depends on the exciton binding energy for that 

material. For photovoltaic application, we prefer the exciton binding energy to be lower than 

thermal energy which is given by 1/𝑘𝑇; where k in Boltzmann constant and T is the 

temperature. At room temperature, this thermal energy is about 26 meV.  
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The exciton binding energy in a semiconductor is a function of dielectric constant of 

the material. The higher the dielectric constant the lower the coulomb attraction force between 

the generated electron-hole pair and so, has lower exciton binding energy.  

The dielectric constant can be calculated from capacitance of a solar cell when it is 

fully depleted at reverse bias and measured at high frequency (200kHz). Although the 

perovskite layer is significantly thicker, but it has a very high dielectric constant. The 

capacitance of a perovskite layer is comparable with the capacitance of the transport layer as 

well. As a result, the device capacitance (apparent capacitance) that we measure is combination 

from the capacitance of perovskite as well as the transport layers. A schematic of this case has 

been showed in figure 4.12. 

 

Figure 4.12: Series connected capacitor assumption of a solar cell 

 

Considering the series capacitance model, the apparent capacitance measured from the 

device is given by,  

1

𝐶𝑎𝑝𝑝𝑎𝑟𝑎𝑛𝑡
=

1

𝐶𝐸𝑇𝐿
+

1

𝐶𝑃𝐸𝑅
+

1

𝐶𝐻𝑇𝐿
 (4.4) 
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Where, 𝐶𝐸𝑇𝐿, 𝐶𝑃𝐸𝑅 and 𝐶𝐻𝑇𝐿 are capacitance contribution from electron transport layer, 

perovskite and hole transport layer respectively. Then equation 4.4 can be expressed as,  

1

𝜖𝑎𝑝𝑝𝑎𝑟𝑎𝑛𝑡
=

1

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
∗

1

𝑡
+

1

𝜖𝑃𝐸𝑅
 

Where, 𝑡 is the thickness of perovskite layer, 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟 is the capacitance contribution 

from the transport layers, 𝜖𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 is the dielectric constant measured device capacitance, 

𝜖𝑃𝐸𝑅 is the dielectric constant of perovskite. Equation 4.5 suggests that due to the contribution 

from transport layer capacitance the 𝜖𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 is always lower than 𝜖𝑃𝐸𝑅. During this 

experiment, we have fabricated devices with structure showed in figure 4.12 with different 

perovskite layer thickness. Then we have calculated the apparent dielectric constant of the 

device from the measured apparent capacitance of the device ( 𝐶𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡). Then we have 

plotted the apparent dielectric constant as a function of perovskite layer thickness for several 

values of possible 𝜖𝑃𝐸𝑅. Finally, by measuring the actual apparent dielectric constant as a 

function of perovskite layer thickness and plotting it the same curve, we can deduce the actual 

dielectric constant of perovskite (as showed in figure 4.13).  

From figure 4.13, it shows that perovskite has dielectric constant of about 60 which 

means it has exciton binding energy of about 0.59 meV which is lower than the thermal energy 

of about 26 meV. Thus, a photon-absorption event in perovskite will result in generation of 

free electrons and holes. 

(4.5) 
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Figure 4.13: Fit of apparent dielectric constant of the perovskite (determined from 

capacitance and thickness) vs. thickness for of the perovskite layer for various values of true 

dielectric constant. The best fit is for ε(real) of ~60. The accuracy of the fit improves as the 

thickness increases, i.e. when the capacitance of the perovskite becomes small 

 

 

4.4 Challenges with Perovskite 

There are some inherent challenges working with perovskite. First, there are some 

serious environmental challenges like Contains Lead (Pb), which is an environmentally 

hazardous material and device performance degrades in presence of moisture. It is also not 

thermally stable because it starts to degrade (decompose) at temperature above 100C. One of 

the most serious problems is that it is not photo-stable, which means the device performance 

changes under different illumination and biasing conditions. Hysteresis in Light IV 

measurement is another inherent problem which means the Light IV measurement depends on 

scan speed and direction as well as pre-biasing conditions. In this section I will discuss about 

these inherent challenges.  
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4.4.1 Environmental stability 

Environmental instability is a challenge to work with perovskite. It decomposes in 

presence of moisture. Zhao et al. in 2016 explained the perovskite degradation in presence of 

moisture and showed that redox reactions are fundamental to explain this degradation. They 

also suggested that metal contacts such as Ag, Al, Yb or Cr as metal contacts act as catalyst to 

enhance this degradation process [27]. The mechanism of this degradation through a redox 

reaction has been showed in figure 4.14.   

 

Figure 4.14: Perovskite decomposition in presence of moisture through a redox reaction and 

assisted by Aluminum [27] 

 

In presence of moisture 𝐴𝑙0 helps 𝑃𝑏2+ to 𝑃𝑏0 through a redox reaction converting 

(𝑀𝐴)𝑃𝑏𝐼3 to (𝑀𝐴)4𝑃𝑏𝐼6. 2𝐻2𝑂. Then through another redox reaction (𝑀𝐴)4𝑃𝑏𝐼6. 2𝐻2𝑂 

decomposes to 𝑀𝐴𝐼 and PbI2. Then MAI reacts with 𝐻2𝑂 and produces 𝑀𝐴𝐼 & HI, which 
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accelerates the process and repeats this cycle. Figure 4.15 shows the In situ XRD diffraction 

analysis of perovskite during various exposure time in moisture and it shows an increase in 

XRD peak counts within Lead (Pb) diffraction window with increasing exposure duration. 

 

Figure 4.15: XRD analysis during degradation in presence of moisture with Aluminum as 

catalyst (a) XRD spectra as a function of time (b) Integrated XRD peak for key materials with 

time (c) XRD in the Lead (Pb) diffraction window during various exposure time [27] 

 

4.4.2 Self-degradation in dark 

Perovskite solar cells not only degrades in presence of moisture, they also show self-

degradation in an inert nitrogen environment. The mechanism behind this has been explained 

by Back et al. by corrosion of the metal electrodes (Al or Ag) by inherent ionic defects in bulk 

perovskite. This phenomenon leads to the intrinsic inherent degradation even in inert nitrogen 

environment [28].  The mechanism behind this intrinsic self-degradation has been showed in 

figure 4.16.  

Solution-processed perovskite crystal films inevitably contain numerous ionic defects 

(e.g., halide or MA ions), particularly at the crystal boundaries. Because of extremely small 

migration activation energy (about 0.1eV) the halide ionic defects easily migrate to other layers 

(upper or lower layers) through the crystal boundaries in the devices even without 

decomposition of perovskite layer. The released corrosive halide ions contaminate the 
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conductive metal (Al or Ag) electrodes and form a thin insulating layer that causes performance 

degradation in perovskite solar cells [28]. 

 

Figure 4.16: Self-degradation of perovskite solar cell in dark assisted by Iodine ions 

which migrates through ETL (PC60BM) and reacts with silver [28] 

 

 

4.4.3 Light IV hysteresis 

 

Figure 4.17: Hysteresis curve for a vapor deposited cell (NIP). The blue curve is the 

original, going from high-bias to low-bias. The red dotted curve is going from low-bias to 

high-bias (with 2 min wait between points), and the black square curve is the next scan going 

from high-bias to low-bias. There is very little change in short circuit current [29] 

 

Hysteresis in Light IV curve can be defined as if the voltage across a solar cell is swept 

from low-bias to high-bias and then immediately swept from high-bias to low-bias the two 
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Light-IV curves don’t super impose on each other. In other words, the device performance is 

different depending on scan direction and scan speed. 

The figure 4.17 shows an example of light IV hysteresis taken on a NIP device 

fabricated on 𝑇𝑖𝑂2. But the PIN devices on either NiO or PTAA doesn’t show any hysteresis 

in light IV which will be discussed in the later part of this report. 

 

 

Figure 4.18: Light IV hysteresis dependence (a) Sweep Direction (b) Sweep Rate (c) 

Pre-Biasing condition [30,31] 

 

The Light IV hysteresis depends on several factors such as scan speed, scan direction 

and pre-biasing condition. The figure 4.18 shows examples of how light IV hysteresis depends 

on different factors. Different experiments show that the hysteresis becomes worse as the scan 

speed increases. Slower scan speed usually doesn’t show any significant hysteresis. This 

behavior can be explained by the Mcghee et al.’s group (figure 4.19). They showed that the 

light IV characteristics show transient behavior with a time constant less than 15s as we scan 
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from either direction. When we are scanning too fast we are only measuring the peaks of the 

transients. Thus, the Light IV measurement is dependent on scan speed.  

 

 

Figure 4.19: Transient behavior in Light IV response on NIP structure solar cell on 

compact 𝑇𝑖𝑂2 [32] 

 

 

4.4.4 Open-circuit voltage evolution 

This phenomenon can be defined as the open circuit voltage evolves during 

illumination at open circuit condition. Similar phenomena can be observed even when the 

device is kept in dark with bias across it. Depending on whether we apply positive or negative 

bias, the open circuit voltage can either increase or decrease respectively. The rate of voltage 

evolution is also a function of the magnitude of applied voltage.  

The open-circuit voltage evolution during illumination in open-circuit condition as well 

as evolution during different biasing conditions has been showed in figure 4.20. This 

measurement was done on an NIP device with structure as showed in figure 4.17. The detailed 

physics behind this open-circuit evolution will be discussed in the later part of this report. 
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Figure 4.20: Shows the comparison of open circuit voltage evolution of 400 nm 

perovskite solar cell at different biasing conditions prior to measurement. Here in case of all 

the biasing conditions the device was kept in dark. We can clearly observe that at forward 

bias of 0.9 V in dark the open circuit voltage increases very rapidly as the rate of ion 

migration is very high at this bias. But in case of forward bias of 0.3 V in dark the open 

circuit voltage evolution is insignificant as we don’t have any significant ion migration at 

this biasing voltage. There is very slight increase in open circuit voltage because of the 

exposure during measurement but that is not significant. At reverse bias in dark the open 

circuit voltage decreases with time as expected. 

 

4.4.5 Ion migration in bulk perovskite 

The origin of hysteresis can be explained by different theories such as Ion migration, 

Ferro-electricity, charge trapping and capacitive effects, among which Ion migration is widely 

accepted. 



www.manaraa.com

84 

 

Figure 4.21: Ion migration in bulk perovskite (a) Device structure of a symmetric 

perovskite device (b) Device under continuous sweep ranging from -2.5V to +2.5V (c) Photo-

current hysteresis of the symmetric device (d) Open-circuit voltage of the device after 

repeated poling by +2.5V and -2.5V bias for more than 750 cycles [33] 

 

Perovskite is well known to be an ionic conductor. Perovskite (𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3) can 

easily decompose and generate ions. These generated ions can move in presence of E-field and 

can easily alter the internal electric field. Z. Xiao and J. Huang et al. showed some interesting 

results which can be explained by migration of ions in bulk perovskite [figure 4.21]. They used 

a sandwich like structure where perovskite was sandwiched between two p-type materials. So, 

during light exposure there should be no photo-voltage developed and the IV response under 

illumination should not depend on sweep direction. But experimentally, the polarity of the 

device changes with bias. Figure 4.21 (b) & (c) shows IV curve in dark and light exposure 

respectively. Figure 4.21 (c) shows switchable photo-voltaic characteristics where by polling 
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with pre-bias the sandwich like structure can generate photo-voltage and act as a photo-voltaic 

device. This phenomenon can be explained by migration of ions inside bulk perovskite. 

Perovskite has both positively and negatively charged ions inside bulk material. When bias is 

applied across the device depending on the biasing direction ions can either accumulate 

towards the interfaces or migrate back towards the bulk. Thus, the internal electric field inside 

the material also changes. This change in internal electric is responsible for switchable photo-

voltaic behavior. 

 

Figure 4.22: Polling in bulk perovskite (a) Instrumentation and device structure used 

in in-situ monitoring of polling process (b) Microscope photos of perovskite layer during 

polling process. The electrical field applied on the perovskite film was 1.2 𝑉µ𝑚−1 [33] 

 

 

Figure 4.23: Band diagram of perovskite solar cell (a) Before ion migration (b) After 

ion migration [34] 
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Z. Xiao and and J. Huang et al. also showed another conclusive evidence of ion 

migration by observation of composition and morphology changes during poling of lateral 

device. That dynamic process was recorded and several snapshots are presented in figure 4.22. 

It shows that the anode of the device becomes transparent after 2 hours bias pooling with 

electric field > 1 𝑉µ𝑚−1. 

Before the ion migration process positive charged cations and negative charged anions 

are anions are uniformly distributed inside bulk perovskite. With influence of the internal 

electric field, the cations drift towards the interface between perovskite-hole transport (p-type) 

layer and anions drift towards perovskite-electron transport (n-type) layer. These ions change 

the internal electric field profile inside bulk perovskite and changes the IV characteristics of 

the solar cell. Change in band-diagram due to ion migration is well emphasized by Eames et 

al. (Figure 4.23). 

Walsh et al. calculated the formation energy of different possible anions and cations 

and concluded that Mythael-Amine (MA) and Iondine (I) vacancies have lowest formation 

energy. That means most of the ions generated in bulk perovskite are positive charged MA 

cations and negative charged I anions. The detailed formation energy for different possible 

decomposition calculated by Walsh et al. is given in Table 4.1. 

 

Table 4.1: Formation energy of ions in perovskite [34,35] 
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Also, we know that rate of migration is inversely proportional to the exponential of 

activation energy,  

𝑟𝑚 = exp (−
𝐸𝐴

𝑘𝐵𝑇
) 

Where, 𝐸𝐴 is the activation energy for ion migration, 𝑘𝐵 is Boltzmann constant and 𝑇 

is the temperature.  

In other words, the lower the activation energy, the easier and more probable for that 

ion to migrate. Eames et al. has calculated the activation energy for ion migration which is 

presented in table 4.2. 

MA cations and Iodine anions have lowest activation energy for migration and thus, it 

is easier for these two ions to move compared to other ions. From formation energy and 

activation energy calculations, it can be interpreted that MA cations and I anions are most 

dominant species in ion migration process inside bulk perovskite. 

 

Table 4.2: Calculation of Activation energy for ionic migration in perovskite [34,35] 

 

(4.6) 

 



www.manaraa.com

88 

 

Figure 4.24: Different probable ion migration site in perovskite [36] 

 

 

 

Figure 4.25: Increase in perovskite grain size reduces hysteresis in Light IV response 

[37] 
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Yuan et al. showed that among several possible ion migration sites (figure 4.24), 

migration through channel in grain boundaries is the most dominant one. They also showed 

that the activation energy for ion migration is about half when we consider migration through 

crystal grain boundaries. And because of soft chemical bonding in the grain boundary sites the 

formation energy of ions is also lower for smaller grain size polycrystalline film. Thus, smaller 

grain size is not only favorable for migration of ions but also assists the generation of ions. 

H.S. Kim and N.G. Park et al. showed that light IV hysteresis is also dependent on grain 

size of perovskite [figure 4.25]. Larger grain size device shows lower hysteresis and smaller 

grain size devices show more hysteresis in Light IV response.    

Later in this report, I will also show that increasing grain size of perovskite 

polycrystalline film helps to reduce photon-induced degradation. 

 

4.5 Optimum E-field for Ion-migration in Perovskite 

In these section, I have discussed the mechanism of ion migration and determined the 

optimum electric field required to initiate the ion migration. I have also explained the reason 

behind significant evolution of open circuit voltage and efficiency during light soaking in open 

circuit condition. Finally, I will relate this optimum electric field with light IV measurements. 

The device structure and the light IV characteristic that we have used during this 

experiment is shown in figure 4.26. This was a n-i-p structure device with compact 𝑇𝑖𝑂2 as an 

electron transport layer (ETL) and 𝑃3𝐻𝑇 as a hole transport layer (HTL). The efficiency of the 

device was 9% after 20 mins of light soaking in open circuit condition and the hysteresis is 

also showed in figure 4.26. We have used three different thicknesses of the perovskite layer of 

around 400, 500 and 600 nm. 
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Figure 4.26: (a) Schematic diagram of the n-i-p perovskite device which is used for 

our measurements (b) The light IV characteristics (400 nm perovskite thickness) of that 

device after 20 minutes of light soaking in open circuit condition. The black line was scanned 

from high-bias to low-bias and the blue line was scanned from low-bias to high-bias. 

 

In figure 4.27 the process of ion migration has been described. First in short circuit 

condition due to the built-in potential the positive ions move towards the hole transport layer 

(HTL) and forms a space charge region near the perovskite-HTL interface and that makes 

perovskite n-type doped near the HTL interface. Similarly, the negative ions move towards the 

electron transport layer (ETL) and forms a space charge region near the perovskite-ETL 

interface and that makes the perovskite p-type doped ETL interface. Then these two space 

charge regions create an electric field opposing the built-in electric field. 

So now we have an effective built-in potential which is lower than original built-in 

electric field and given by,  

𝑉𝑏𝑖
′ = 𝑉𝑏𝑖 − 𝑉𝑖𝑜𝑛  

This process continues until the effective built-in field is large enough to move these 

ions and form space charge. So finally, it reaches a steady-state condition and there is a net 

electric field due to the effective built-in potential. Now if we apply forward bias these ions 

(4.7) 
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migrate in the opposite direction and finally reaches a steady state condition again. In this case 

to have significant ion migration we must apply forward bias more than a threshold voltage. 

We call this threshold voltage as onset of ion migration voltage (𝑉𝑜𝑛𝑠𝑒𝑡). 

 

Figure 4.27: The process of ion migration (a) Due to the built-in potential the 

positive ions move towards the HTL and negative ions move towards ETL (b) The ions move 

towards the contact layers and form space charge regions which develops an electric field 

opposing the built-in electric field. The effective built-in potential is reduced to 𝑉𝑏𝑖
′ = 𝑉𝑏𝑖 −

𝑉𝑖𝑜𝑛 (c) If we apply bias in forward direction above a threshold voltage the ions start to 

migrate in a direction indicated in the figure. We have an effective net voltage, 𝑉𝑛𝑒𝑡 = 𝑉𝑏𝑖 −
𝑉𝑖𝑜𝑛 − 𝑉𝑎𝑝𝑝 

 

(a) 

(b) 

(c) 
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The reason we must apply a minimum voltage to initiate this ion migration is that we 

must overcome the barrier due to the effective built-in potential and there might be some 

interface charge traps as well. Below this threshold voltage we might have some ion migration 

due to diffusion as the barrier lowers because of applying a small forward bias but above this 

threshold voltage ion migration due to drift dominates and we have observed a significant 

increase in migration of ions. In this section, I have showed a method to calculate this onset of 

ion migration voltage from capacitance vs time plot at different bias. The measured net 

capacitance can be expressed as,  

𝐶𝑛𝑒𝑡 =  
𝑑𝑄

𝑑𝑉
 

The capacitance that we measure at a given bias voltage has three charge components: 

the depletion charge due to the built in potential, the injection charge due to applied bias and 

the ion charge due to ion migration. So, total charge that contributes to the net capacitance can 

be expressed as,  

𝑄 = 𝑄𝑑𝑒𝑝𝑙 + 𝑄𝑖𝑛𝑗 + 𝑄𝑖𝑜𝑛 

The net voltage (V) is effective on all three types of charges and so we can take 

derivative with respect to V on both sides of equation 4.9,  

𝑑𝑄

𝑑𝑉
=

𝑑𝑄𝑑𝑒𝑝𝑙

𝑑𝑉
+

𝑑𝑄𝑖𝑛𝑗

𝑑𝑉
+

𝑑𝑄𝑖𝑜𝑛

𝑑𝑉
 

Equation 4.10 can be expressed as three capacitance components,  

𝐶𝑛𝑒𝑡 = 𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗 + 𝐶𝑖𝑜𝑛 

(4.8) 

 

(4.9) 

 

(4.10) 

 

(4.11) 
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From equation 4.11, we can see that the measured net capacitance can be expressed as 

linear combination of depletion, injection and ion capacitance components. Thus, we can 

express the contribution of capacitance from migration of ions can be expressed as,  

𝐶𝑖𝑜𝑛 = 𝐶𝑛𝑒𝑡 − (𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗) 

If we can find a way to determine the combination of depletion and injection 

capacitance (𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗), by subtracting this amount from the measured capacitance we can 

get the capacitance due to ion migration. From the parallel plate capacitance approximation, 

we can relate the amount of charges and the capacitance due to ion migration,  

𝑄𝑖𝑜𝑛 = 𝑉𝐶𝑖𝑜𝑛 

We can express the rate of ion migration as a function of rate of change in capacitance. 

Figure 4.28(a) shows the ionic capacitance vs time curve for a n-i-p device with perovskite 

layer thickness of 400 nm. For this measurement before starting measurement at any bias we 

have kept the device at short circuit condition in dark to stabilize the capacitance and to ensure 

that the device is at similar initial condition before measuring at every bias. Then we have 

instantaneously changed the bias from short circuit condition to a specific biasing voltage. So, 

at time t=0 assuming there is no ion migration the capacitance we have measured indicates the 

combination of depletion and injection capacitance components. Then we have measured the 

capacitance at different time. If we deduct the capacitance at time t=0 from measured 

capacitance at time 𝑡 = 𝑡1, we can get the ionic capacitance due to ion migration. Then we 

have plotted this ionic capacitance as a function of time [figure 4.28(a)]. From this figure, we 

can see that initially the capacitance increases very quickly and finally reaches a linear or 

steady state condition. Another important thing to observe from this plot is that the slope of 

these curves at linear region increases with increasing bias voltage as the rate of ion migration 

(4.12) 

 

(4.13) 
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is higher at higher bias voltage. Thus, the slope of this linear region is a function of rate of ion 

migration. Then we have plotted the slope of steady state response as a function of bias voltage 

[figure 4.28(b)] which can be fitted as a straight line. The line has an intercept at x-axis of 0.45 

V. This intercept shows that below 0.45 V the rate of ion migration is negligible and above 

0.45 V we have significant ion migration. We call this threshold voltage as onset of ion 

migration voltage. We have also repeated the same procedure below 0.45 V (at 0.3 V and 0.35 

V) to observe if there is any significant ion migration or not and we have observed that the 

change in ionic capacitance is not significant below this threshold voltage [figure 4.28(a)]. The 

onset of ion migration voltage will vary with change in perovskite layer thickness. So, we have 

calculated the optimum electric field (𝐸𝑜𝑝𝑡) that is required for ion migration which is 

independent of thickness and we have got a value of 1.13 𝑉 µ𝑚−1 for this 400nm device which 

is consistent with the result reported by Xiao et al. [33] and Deng et al. [38] where they have 

reported that to switch the photo-current direction from polling effect they had to apply an 

electric field of around 1𝑉 µ𝑚−1. We have also repeated the same experiment for 500 nm and 

600 nm thick perovskite layer devices and we have obtained this optimum electric field of 1.18 

𝑉 µ𝑚−1 and 1.05 𝑉 µ𝑚−1 respectively. 

 

Table 4.3: Optimum electric field required for ion migration at different perovskite 

layer thickness 
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Figure 4.28: Calculation of onset of ion migration voltage and optimum electric field 

required for ion migration in a 400nm perovskite layer n-i-p device (a) Plot shows ionic 

capacitance as a function of time at different forward biasing conditions. The graph clearly 

shows the slope at linear region increases with increasing forward bias voltage. That 

signifies the rate of ion migration is higher at higher bias voltage. (b) Plot shows the slope of 

linear region at different bias voltage as a function of bias voltage. We can fit the data points 

by a straight line and the x-intercept gives the onset of ion migration voltage. From this 

voltage, we can calculate the optimum E-field required for ion migration. 

 

Now there are several research groups who have reported the significant increase in 

open circuit voltage and efficiency during light soaking [33,38,39]. This behavior can be 

explained from ion migration. As we have showed in short circuit condition the ions move near 

the contact layers to form space charge regions and that reduces the effective built-in potential. 

As a result, the starting open circuit voltage is lower. When the device is illuminated the photo-

voltage acts as forward bias and initiates ion migration which increases the effective built-in 

potential and so the open circuit voltage increases. The increased open circuit voltage further 

increases the ion migration and as a result increases the effective built-in potential as well as 

the open circuit voltage. This process continues until the open circuit voltage saturates as the 

drift and reverse diffusion of ions are balanced [38].  
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Figure 4.29: These plots show the comparison of light IV curves of 400 nm perovskite 

(n-i-p) solar cell at different biasing conditions before measurements (a) Shows the evolution 

of light IV curves during light soaking in open circuit condition for 20 minutes. We can 

clearly observe the evolution of open circuit voltage with time. The arrow shows the 

direction of evolution with increasing time. The efficiency showed on the graph is after 20 

mins of light soaking. (b) Shows the evolution of light IV curves when it was kept in dark at 

forward bias with biasing voltage of 0.9 V which is greater than the onset of ion migration 

voltage of 0.45 V. We can clearly observe the evolution of open circuit voltage with time. 

Again, the arrow shows the direction of evolution with increasing time. The efficiency on the 

graph is after 10 mins of forward bias at 0.9 V in dark. (c) Shows the light IV curves when he 

device was kept in dark for 20 minutes in forward bias at biasing voltage of 0.3 V which in 

smaller than the onset of ion migration voltage of 0.45 V. As we have predicted that we don’t 

have significant ion migration at this voltage, we don’t have signification voltage evolution. 

(d) Shows the light IV curves when the device was kept in dark at reverse bias condition with 

biasing voltage of -0.5 V after the open-circuit voltage saturates at the maximum value. As 

we have expected the open circuit voltage decreases with increasing time. The arrow shows 

the direction of light IV characteristic change with time. 
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If our model is accurate, we should also observe the open circuit voltage evolution even 

when we apply a bias in forward direction in dark. And as we have discussed for the 400nm 

device if we apply forward bias more than 0.45 V we should observe voltage evolution as the 

ion migration is significant in this range. Similarly, if we apply a forward bias less than 0.45 

V we should not observe any significant voltage evolution as we can neglect ion migration in 

this range. Also in reverse bias, the open circuit voltage should decrease as the ions move in 

opposite direction. From figure 4.29 we can see that the open circuit voltage saturates very 

quickly if we keep it in dark at forward bias voltage of 0.9 V [figure 4.29(b)] compared to light 

soaking [figure 4.29(a)]. At a forward bias voltage of 0.3 V the open circuit voltage should not 

increase significantly [figure 4.29(c)] although we have seen very slight increase as the device 

was under illumination during the measurements. So, the results from light IV also matches 

with the result that we have got from the ionic capacitance vs time curves.  
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CHAPTER 5.    FABRICATION AND OPTIMIZATION OF PEROVSKITE SOLAR 

CELLS 

5.1 Fabrication Methods 

As discussed in Chapter 2, perovskite solar cells can have two different structures: p-i-

n and n-i-p as showed in figure 5.1. There are different organic or inorganic materials which 

can serve as electron and hole transport layers. The 𝑝+ layer or hole-transport layers can be 

either Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), Nickel (II) Oxide (NiO), 

Poly(3-hexylthiophene-2,5-diyl) (P3HT), Poly(4-butylphenyldiphenylamine) (Poly-TPD), 

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) etc. The 𝑛+ layer or 

electron-transport layers can be either Cadmium Sulfide (CdS), Zinc Oxide (ZnO), [6,6]-

Phenyl C61 butyric acid methyl ester (PCBM), Titanium-di-oxide (𝑇𝑖𝑂2) etc. Often, we need 

to dope these materials to enhance the conductivity. For instance, we can dope Cadmium 

Sulfide with Indium and dope Zinc Oxide with Aluminum to make them more conductive.  

 

Figure 5.1: Device structure (a) n-i-p structured (b) p-i-n structured perovskite solar 

cells (The diagram is not drawn to scale) 
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There are several fabrication techniques available to deposit a layer of perovskite 

(figure 5.2). The three major categories can be: Solution process, Vapor process or hybrid. In 

solution process the precursors that are used to form perovskite are dissolved in an organic 

solvent, commonly in Dimethylformamide (DMF), and spin coated on the substrate to form 

perovskite. The solution process can be of different types: single solution process, where all 

the precursors are mixed in a single solution to spin-coat the perovskite layer [1,2,3,4] or 

sequential process, where the precursors are coated one after the other followed by annealing 

to form perovskite [5]. Li et al. also developed a method as vacuum flash-assisted solution 

process with helps to enhance perovskite grain size [6].       

 

Figure 5.2: Different fabrication techniques for perovskite 

 

In vapor process the precursors are evaporated followed by an annealing process to 

form perovskite [7,8,9,10,11]. In co-evaporation, all the precursors are evaporated on a 

substrate together and in sequential process the precursors are evaporated one after the other. 

Both processes are followed by annealing to from perovskite. Perovskite can also be deposited 

by hybrid process which is a combination of solution and vapor process, where one of the 
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precursor is evaporated while the other is spin-coated on the substrate [12]. The most common 

techniques which are used today is single solution process with anti-solvent method and co-

evaporation. Figure 5.3 shows the illustration of solution-processed and vapor-processed 

fabrication methods of perovskite. 

 

Figure 5.3: Fabrication methods of perovskite: Solution-processed (left) and Vapor-

processed (right) [8,13,14] 

 

The most popular form of perovskite is fabricated using an organic precursor 

methylammonium iodide (𝑀𝐴𝐼) and inorganic perovskite lead iodide (𝑃𝑏𝐼2). The formation 

of perovskite follows the following chemical reaction, 

𝑃𝑏𝐼2 + 𝐶𝐻3𝑁𝐻3𝐼 →  𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3 

There are several groups who have fabricated mixed halide or non-iodide perovskite 

also [1,8,15]. 

In this report, I have used p-i-n structured perovskite solar cells where the hole transport 

layer is either NiO or PTAA. For fabrication of NiO we have used ebeam evaporation. A 30 

nm of NiO was deposited with deposition rate of 0.5Å/s. Then, it was annealed at 200𝑜𝐶 for 
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1 hour in presence of air. For fabrication of PTAA, the ITO substrate was cleaned in air plasma 

for 10 minutes. Then we have spin coated 2.18 mg/mL PTAA solution in Toluene at 6000 rpm 

for 40 seconds in a nitrogen filled glovebox followed by an annealing at 150𝑜𝐶 for 10 minutes. 

This gives about 15-20 nm of PTAA film thickness.   

Perovskite was also fabricated in the nitrogen filled glovebox as it degrades in presence 

of moisture.  About 1.6 M perovskite solution, contains 𝐶𝐻3𝑁𝐻3𝐼, 𝑃𝑏𝐼2, Dimethyl sulfoxide 

(DMSO) in Dimethylformamide (DMF) with molar ratio of 1:1.05:1, was spin coated at 4000 

rpm for 25 seconds with drop cast of chlorobenzene on 10 seconds’ delay. This gives about 

600 nm of perovskite layer thickness. Then it was annealed at 60°C for 1 minute followed by 

100°C for 5 minutes. For the device fabricated on PTAA, the substrate was wetted using DMF 

before spin-coating of perovskite. The reason behind this will be explained in the later part of 

this chapter.   

Then 20 mg/mL PC60BM in chlorobenzene solution was spin coated at 2000 rpm for 

40 seconds. Then the whole structure was annealed at 100°C for 15 minutes. Finally, about 

100 nm of Aluminum was deposited using thermal evaporator with a deposition rate of about 

2-4 Å/s. A mask was used during Aluminum evaporation to deposit a circular shape contact of 

area 0.106 𝑐𝑚2. 

 

5.2 Solvent Annealing of Perovskite 

The single solution process using the anti-solvent method [2] gives high quality 

uniform perovskite film. But the grain size of perovskite is only in the range of 200-300 nm. 

Later in this report, I will discuss that larger grain size of perovskite will enhance the photo-

stability of these solar cells. One way to enhance the perovskite grain size is solvent annealing. 
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Xiao and Huang et al. first proposed the solvent annealing process [16]. The solvents 

such as DMF [16] and DMSO [17] which can dissolve the perovskite has been used for the 

solvent annealing process. The kinetics behind the grain enhancement has been described by 

Xiao et al. and Liu et al. [16,17] as showed in figure 5.4. 

 

Figure 5.4: Perovskite grain size enhancement using solvent annealing (a) Process of 

solvent annealing after spin coating perovskite solution (b) Formation of liquid-solid state 

between grains which leads to formation of larger grains (c) Solvent annealing helps 

enhancement of perovskite in all three dimensions [16,17] 

 

The figure 5.4 shows a common procedure for grain size enhancement (solvent 

annealing). For the solvent-annealed device, after spin coating perovskite it was annealed in 

presence of solvent (10 uL DMF in this case) [Figure 5.4 (a)]. Xio et al. and Liu et al. has 

explained the mechanism behind grain size enhancement. Per their model when the film is 

placed in a solvent vapor at an elevated temperature with in a closed space the vapor will 

condense on the film surface. The solvent vapor can migrate through the grain boundaries and 

form a liquid-solid phase (or quasi liquid phase). Consequently, this liquid phase can play a 

role of binder, which helps to eliminate the grain boundaries and enhances the grain size. Liu 
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et al. has also showed that the grain enhancement is a three-dimensional procedure. During 

this process, the grain size increases both in lateral and vertical directions [Figure 5.4 (c)]. 

Figure 5.5 shows the grain size enhancement of perovskite using solvent annealing with DMF 

demonstrated by Liu et al. [17]. They showed that the film without solvent annealing has grain 

size in the range 100-200 nm. But the perovskite film with solvent annealing has grain size in 

the order of 1µm. 

 

Figure 5.5: Perovskite grain size enhancement by solvent annealing (a) Without 

solvent annealing (b) With solvent annealing. There is about 10X enhancement in grain size 

[17] 

 

5.3 Efficiency Optimization on PTAA as HTL 

In this section, I will discuss the efficiency optimization process of perovskite solar cell 

on PTAA as hole transport layer using single solution process. The structure of the device that 

has been used for this efficiency optimization has been shown in figure 5.7. This figure also 

shows the band edges of different layers matches very well for the photovoltaic application.   
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Figure 5.6: Properties of PTAA (a) Transmission for two different thickness PTAA 

layers (b) Chemical structure of PTAA (c) Tauc curve for band-gap measurement 

 

 

Figure 5.7: Efficiency optimization of perovskite solar fabricated on PTAA as hole 

transport layer using single solution process (a) Device structure (b) Corresponding band 

edges 

 

Figure 5.6 physical properties of PTAA. The Tauc plot shows that PTAA is a direct 

bandgap material with a bandgap of about 3 eV. And the transmission in the visible range 

significantly increases as we reduce the thickness of PTAA from ~30 nm (4.18 mg/mL solution 

in toluene as solvent at 6000 rpm for 40 secs) to about 15-20 nm (2.18 mg/mL solution in 



www.manaraa.com

109 

toluene as solvent at 6000 rpm for 40 secs). As a result, we expect the short-circuit current to 

increase with thinner PTAA. 

 We followed the fabrication procedure as described in section 5.1. Initially, ITO 

Coated glass substrate was spin coated with 4.36 mg/mL PTAA solution at 6000 rpm for 40 

seconds (Thickness of about 30 nm). Then anneal at 150°C for 10 minutes. Then about 1.6M 

perovskite solution was prepared having 𝑃𝑏𝐼2, 𝐶𝐻3𝑁𝐻3𝐼 and DMSO in DMF with molar ratio 

1:1:1. Perovskite was spin coated at 4000rpm for 25 seconds with drop cast chlorobenzene on 

10 seconds’ delay (Thickness of about 600 nm). Then annealed 60°C for 1 minute and followed 

by 100°C for 5 minutes. Then 20mg/mL PCBM in chlorobenzene solution was spin coated at 

2000 rpm for 40 seconds. Then it was annealed at 100°C for 15 minutes. 100 nm of Aluminum 

is deposited using thermal evaporator. The area of the contact was 0.106 𝑐𝑚2. The power-

conversion efficiency of this solar cell has been showed in figure 5.8. 

 

Figure 5.8: One of the first devices made on PTAA before efficiency optimization (a) 

Light-IV characteristics (b) External Quantum efficiency as function of wavelength 
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We had a problem with perovskite solution spreading on PTAA. And, the device in 

figure 5.8 had a huge voltage evolution. The short circuit current was low. The Quantum 

efficiency suggests that we are losing a lot of photons due loss in transmission. 

So, we had some serious challenges to solve before we get good devices on PTAA 

using single solution process: 

1. As the Perovskite-solution doesn’t spread on PTAA, the film had a lot of pin-holes. 

These pin-holes reduce the reproducibility of these devices. 

2. They show huge open-circuit voltage evolution. That must because of lot of ions 

present even when the device is not exposed under light. These ions can alter the electric field 

inside the absorber perovskite layer. They can redistribute themselves in presence of external 

electric field which helps the open-circuit voltage evolution. 

3. The short circuit current is low because of loss in transmission which can be solved 

by reducing PTAA thickness. 

 

5.3.1 Solution of spreading problem on PTAA  

To solve this problem first, we need to understand the reason behind why to solution 

doesn’t spread. As showed in figure 5.9, if the surface energy between the solution and the 

surface is too high the molecules tend to gather in small areas rather than spreading on the 

whole surface. This action helps the contact angle between the solution and the surface to 

increase. A high contact angle means poor wettability while a low contact angle means high 

wettability. In general, a 900 contact angle is considered as the cut-off between wetting and 

dewetting. But even with contact angle below 900, it can still lead to difficulty in coating. The 
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thumb rule is that to obtain a good uniform film it is recommended to have contact angle < 300 

[18]. 

 

Figure 5.9: Illustration of contact angle related spreading issue (a) Contact angle for 

Non-wetting and wetting solution (b) High surface energy between solvent and PTAA surface 

leads to pin-hole [18] 

 

Two possible solutions: 

A. Increasing random surface roughness to enhance wettability (Playing with surface 

geometry) 

 

Figure 5.10: Introducing surface roughness can enhance spreading of solution 

 

But this method will only work if the contact angle between a smooth surface and the 

solution is less than 650. If the solution is already wetting, then by introducing random 

roughness can reduce the contact angle which can overcome the potential barrier due to 

roughness. 
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We have tried with Argon and Oxygen plasma treatment on PTAA to increase random 

roughness. 

 

Figure 5.11: Light IV characteristics with Argon plasma treatment of PTAA (a) with 

20W power for 20 seconds (b) with 20W power for 40 seconds 

 

 

Figure 5.12: Light IV characteristics with Oxygen plasma treatment of PTAA (a) with 

low power (10W) for 30 seconds (b) with medium power (20W) for 10 seconds 

 

(a) (b) 

(a) (b) 
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The solar cell efficiencies using Argon plasma treatment with 20W power has been 

showed in figure 5.11. The argon plasma treatment didn’t give us a significant improvement 

in spreading and no significant improvement in device performance.  

Next, we have tried with oxygen plasma treatment at two different power. We have 

tried at low power (10 W) for 30 seconds and high power (20 W) for 10 seconds. The light IV 

characteristics and power conversion efficiencies for both the devices have been showed in 

figure 5.12. Oxygen plasma treatment increases the spread-ability but the device performance 

goes down. A possible reason may be oxygen reacts with PTAA during treatment. So, 

increasing the random roughness of the PTAA surface didn’t help to enhance the device 

performance. 

 

B. Changing surface property to enhance wettability (Playing with chemical property) 

         

Figure 5.13: Reducing surface energy can enhance spreading of solution 

 

This is a very well-known procedure for increasing spread-ability of a solution on the 

surface. By washing with a specific solvent before spin coating can alter the surface chemistry 

which can help to reduce the surface energy significantly [18]. Thus, the contact angle between 

the solvent and the surface reduces and it helps the solution to spread on the substrate while 

spin coating. This process reduces the number of pin-holes and increases reproducibility of the 

process. 

One way we can reduce the surface energy is washing with a solvent (DMF in our case) 

to change surface chemical property. Pre-wetting the PTAA surface with DMF increases the 
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spread-ability significantly and there seems to be negligible number of pin-holes. Thus, device 

performance increases, significantly. But the device still showed huge open-circuit voltage 

evolution. For example, the Light-IV curve showed in the figure 5.14 was taken after 4 mins 

of light soaking under open circuit condition. And, the Quantum efficiency shows that there 

still room for improvement in short-circuit current. Figure 5.14 shows the device performance. 

 

Figure 5.14: Device performance with pre-wash of PTAA with DMF (a) Light IV 

characteristics (Light IV was taken after open circuit exposure for 4 minutes) (b) External 

quantum efficiency as a function of wavelength 

 

5.3.2 Solution to open circuit voltage evolution 

 We can use 1:1.05 Molar Ratio of MAI: 𝑃𝑏𝐼2 (5% Excess PbI2) rather than using 1:1 

molar Ratio of MAI: 𝑃𝑏𝐼2. This helps to reduce the open-circuit voltage evolution. 

𝑀𝐴+ + 𝐼− + 𝑃𝑏𝐼2 ↔ 𝑀𝐴𝑃𝑏𝐼3 

 
 The reason behind open-circuit voltage evolution is that there are ions present inside 

the bulk perovskite absorber layer. These ions can redistribute themselves in presence of an 

external electric field. So, the open-circuit voltage increases during light soaking at open-

(a) 
(b) 
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circuit condition. But when we introduce excess of 𝑃𝑏𝐼2 the equilibrium condition to the above 

chemical reaction shifts to the right by converting the ions to perovskite. So, the open-circuit 

voltage evolution decreases as there is less number of ions present in the bulk material. The 

performance of this device has been shown in figure 5.15. The detailed study of perovskite 

stoichiometry on device performance will be discussed in chapter 7. 

 

Figure 5.15: Device performance with excess 𝑃𝑏𝐼2 (a) Light IV characteristics (no voltage 

evolution) (b) External quantum efficiency as a function of wavelength. No light soaking was 

done before measuring the light IV characteristics 

 

5.3.3 Increase in short-circuit current with thinner PTAA 

As the transmission data showed in figure 5.6, there is an increase in transmission with 

reduced thickness of PTAA, we can also expect the short-circuit current to increase. By 

reducing the PTAA solution concentration to 2.18 mg/mL, the short-circuit current increases. 

The difference in transmission is also visible in comparison of Quantum Efficiency data 

(Figure 5.17). The quantum efficiency is significantly higher for thinner PTAA (~10-15nm) 

(a) 
(b) 
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than thicker PTAA (~30nm). I have got a cell efficiency of 18.5% (Figure 5.16). This is one 

of the best cells on PTAA (best using single solution process). 

 

Figure 5.16: Device performance with thinner PTAA layer (a) Light IV characteristics (no 

voltage evolution) (b) External quantum efficiency as a function of wavelength 

 

 

Figure 5.17: External quantum efficiency comparison between two different thickness of 

PTAA 

 

 

 

 

 

(a) (b) 
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5.3.4 Statistical analysis 

 

 

 

Figure 5.18: Statistical analysis of device performance (a) Bar chart of device attributes 

(Voc, Jsc, FF, Efficiency) (b) 95% confidence interval of device attributes (Shows the 

consistency in device performance) 

(a) 

(b) 



www.manaraa.com

118 

Figure 5.18 shows the statistical analysis of the photovoltaic parameters of the control 

perovskite solar cell on PTAA (optimized in section 5.3.3). The figure shows statistics for 38 

devices. The mean power conversion efficiency is 16.7% with a standard deviation of 0.76, 

where the maximum efficiency achieved is 18.5%. This analysis shows that the procedure is 

very reproducible. 

 

5.4 CdS and ZnO as Transparent Electron Transport Layers 

CdS and ZnO can serve as transparent top contact of a perovskite solar cell. This 

transparent contact is important for tandem solar cell as the light will shine from top. Figure 

5.19 shows the device structures for both substrate (light is incident from the bottom) and 

superstrate (light is incident from the top). 

 

Figure 5.19: Device structure of perovskite solar cell (a) Light shining from bottom 

(superstrate) (b) Light shining from top (substrate) 

 

On top of PCBM two other Electron transport layers were deposited. Here 25nm of 

Indium doped CDS was deposited using thermal evaporator (Co-evaporation of CdS and 

Indium) at a rate of 1-2 Å/s. And 280nm Aluminum doped ZnO was deposited using Argon 

(a) (b) 
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plasma sputtering (at room temperature substrate) at 80W power at a rate of 7 Å/s. Here CdS:In 

layer acts as a buffer layer between ZnO and PCBM because ZnO doesn’t make good 

interfacial contact either with Perovskite or PCBM. The band edges show that both these layers 

are near-perfect match to have good ohmic contacts without sacrificing any significant open-

circuit voltage. 

 

Figure 5.20: Light IV response of perovskite solar cell (a) Light shining from bottom 

(superstrate) (b) Light shining from top (substrate) 

 

Figure 5.20 shows the power-conversion efficiencies for both superstrate [Figure 5.20 

(b)] and substrate [Figure 5.20 (b)] structure. The efficiency for the device with transparent 

ZnO on top has lower efficiency as the CdS:In layer absorbs photons with energy up to 2.5 eV. 

This claim can be proved from the quantum efficiency measurement (Figure 5.21). It clearly 

shows that the quantum efficiency is lower for the device which was measure by light shining 

through CdS and ZnO layer because of absorption in CdS layer up to 512 nm of wavelength 

which corresponds to about 2.5 eV of photon energy. 

(a) (b) 



www.manaraa.com

120 

 

Figure 5.21: External quantum efficiency comparison between substrate and 

superstrate perovskite solar cells 

 

 

Figure 5.22. Light IV response of perovskite solar cell with CdS/ZnO as buffer layers 

(i) Just after fabrication (ii) After device was kept in 30-50% humidity for 30 days 

 

CdS and ZnO as buffer layers also help to improve the stability of these devices in 

presence of moisture. ZnO acts as an encapsulating layer to shield perovskite from moisture 

and oxygen. Figure 5.22 shows the light IV comparison of perovskite solar cell with CdS/ZnO 

as buffer layers before exposure in moisture (pristine device), and measured after it was kept 

at 30-50% humidity outside glovebox for 30 days. Perovskite solar cells with no CdS/ZnO as 
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buffer layer degrades immediately after exposure to moisture but adding CdS/ZnO as buffer 

layer improves the device stability in ambient environment for more than 30 days. Table 4 

shows the photovoltaic parameters of this device before and after exposure in moisture. 

 

Table 5.1: Photovoltaic parameters for a device with CdS/ZnO as buffer layers before 

and after exposure in moisture 

 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

Before Exposure in Moisture 1.09 21.6 74 17.4% 

After 30 days @30-50% Humidity 1.09 21.5 71 16.7% 

 

CdS and ZnO also acts as a buffer-layer to improve recovery after photon-induced 

degradation. This phenomenon will be discussed in chapter 7. 

 

5.5 Co-evaporated Perovskite Solar Cell 

We use ITO Coated glass substrate and Spin coat 1.43 mg/mL PTAA solution 

(Thickness of about 10 nm). Then anneal at 150° C for 10 minutes. Perovskite was deposited 

using co-evaporation. For this co-evaporated device, initially 5 nm of 𝑃𝑏𝐼2 was deposited 

followed by co-evaporation of 𝑃𝑏𝐼2 at 5.85 Å/s and 𝑀𝐴𝐼 at 3.75-4.2 Å/s. The pressure during 

deposition was in the range of 9.2 − 10−5 𝑇𝑜𝑟𝑟. Then it was post annealed at 100° C for 1 

hour. 20 mg/ml PCBM was spin-coated at 2000 rpm for 40 seconds in a nitrogen-filled 

glovebox. Then it was annealed at 100° C for 15 minutes. Finally, 100 nm of Aluminum was 

deposited using thermal evaporator at 1-4 Å/s. A mask has been used during Aluminum 

evaporation which gives a circular contact with an area of 0.106 𝑐𝑚2.  
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Figure 5.23: Device structures used for photon-induced degradation; Fabricated on 

PTAA and co-evaporated perovskite 
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CHAPTER 6.    PHOTON-INDUCED DEGRADATION OF PEROVSKITE SOLAR 

CELLS 

6.1 Introduction 

Environmental instability is problem for perovskite solar cells. This can be solved by 

encapsulation. But the alarming problem is the instability of these solar cells under illumination 

and this cannot be avoided as the solar cell must work under light. To mitigate this problem 

first we have to understand the detailed physics behind this photo-instability. Pranav el al. [1,2] 

studied the photo-degradation of p-i-n structured perovskite solar cell on NiO as hole-transport 

layer (ITO/NiO/Perovskite/PCBM/Al) and explained the degradation using migration and 

generation of ions. The device structure is given in figure 6.1. In this chapter I will explain the 

physics of photon-induced degradation and develop a complete mathematical model. Finally, 

I will propose a modified equivalent circuit model to explain this degradation mechanism. 

 

6.2 Photon-induced Degradation 

The conditions under which all the photon-induced degradations were performed are: 

➢ Perovskite solar cells are kept at constant illumination under simulated solar 

spectrum of one-sun intensity [AM1.5]. 

➢ All degradations are done under open-circuit condition (except specified 

otherwise) as it is close to the maximum power point. 

➢ All light IV measurements during exposure is measured from High Bias- Low 

Bias. 

➢ The light IV measurement was started at about 15% higher than Open-circuit 

voltage 
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➢ Light IV measurements were done very fast to negate the effect of ionic motion 

(About 100 mV/Second) 

 

Figure 6.1: (a) Device structure and (b) Light IV characteristics of the solar cell used 

for photon-induced degradation study. The starting power-conversion efficiency is 15.5% 

 

Figure 6.1 shows the device structure and starting light IV characteristics of the device 

that has been used in this photon-induced degradation study. The photon-induced degradation 

result has been reported in figure 6.2. Please note the increase in open circuit voltage and 

decrease in short-circuit current during this degradation. 

 

6.2.1 Short-circuit current degradation 

It is very well known that there are mobile ions present in bulk perovskite which can 

redistribute themselves in presence of electric field. At thermal equilibrium, the positive ions 

move towards the HTL and negative ions move towards to ETL due to internal electric field 

(figure 6.3). Because of high electric field present at the interfaces these ions do not contribute 

to recombination with photo-generated carriers. But during exposure in open-circuit condition 

as the internal electric field decreases the mobile ions can migrate towards bulk perovskite. 
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And in addition to that more ions are generated by high energy photons. The generated electron 

hole pairs recombine with the ions to contribute to current loss.  

 

Figure. 6.2: Photon-induced degradation measured at one-sun intensity in open-

circuit condition for 100 hours 

 

 

Figure 6.3: Band diagram explaining short-circuit current degradation due to 

generation and migration of ions in perovskite; At thermal equilibrium (left), during photo 

exposure in open circuit condition (right) 

 

The degradations in short-circuit current density can be fitted with a double-exponential 

equation as,  
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𝐽𝑠𝑐(𝑡) = 𝐽𝑠𝑐,𝑡=0 − 𝛥𝐽𝑠𝑐 
 

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

 
With boundary conditions, 

(𝑖) 𝑎𝑚+ 𝑎𝑔=
𝛥𝐽𝑠𝑐

𝐽𝑠𝑐,𝑡=0
 |𝑡→∞        (𝑖𝑖)𝛥𝐽𝑠𝑐= 0 at t=0 

 
It is understandable why we need two exponentials to fit the short-circuit current 

degradation if we consider both migration and generation of ions contribute in this photon-

induced degradation. We can consider the first exponential takes care of the migration of ions 

with a time constant of 𝑡𝑐𝑚 and a magnitude of 𝑎𝑚. And the second exponential models the 

generation of ions with a time constant of  𝑡𝑐𝑔 and a magnitude of 𝑎𝑔. For NiO the values 

which can describe the short-circuit current degradation are: 𝑡𝑐𝑚 = 2 ℎ𝑜𝑢𝑟𝑠, 𝑎𝑚 =

0.084 𝑚𝐴𝑐𝑚−2,  𝑡𝑐𝑔 = 20 ℎ𝑜𝑢𝑟𝑠,  𝑎𝑔 = 0.084 𝑚𝐴𝑐𝑚−2. 

 

6.2.2 Open-circuit voltage evolution 

Two understand the open circuit voltage evolution we need to consider two components 

which play a role in open circuit voltage evolution during light exposure: 

➢ Increase in open circuit voltage due to migration of ions from contact layers to 

the bulk 

➢ Decrease in open circuit voltage due to increase in non-radiative recombination 

 

 

 

(6.1) 

 

(6.2) 

 

(6.3) 
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(i) Increase in open circuit voltage due to migration of ions: 

 

Figure 6.4: Band diagram explaining the first component of open-circuit voltage 

evolution, increase in Voc due to ion migration (a) Just after fabrication ions are starting to 

accumulate towards perovskite-contact layers’ interfaces (b) band diagram under thermal 

equilibrium (c) At the onset of photo-degradation ions are starting to accumulate towards 

bulk perovskite (d) During exposure ions have migrated towards neutral bulk perovskite 

 

At thermal equilibrium, ions near the contact layers create an electric field opposing 

the built-in electric field. Thus, reduces the net electric filed and reduces the open-circuit 

voltage [Figure 6.4(b)]. Here, the parameter  𝑉𝑑 is defined as the difference in open circuit 

voltage if there are no ions at thermal equilibrium (𝑉𝑜𝑐,0) and the actual open circuit voltage 

measured at time t=0 (𝑉𝑜𝑐,𝑡=0, before exposure). The 𝑉𝑑 for NiO is 0.07V. At the onset of 

photo-degradation these ions start moving from the perovskite-contact layer interfaces towards 

the neutral bulk region and so, the open circuit voltage starts to increase towards the value if 

there were no ions present at thermal equilibrium with a time constant  𝑡𝑐𝑚 = 2 𝐻𝑜𝑢𝑟𝑠 which 
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is consistent with the time constant obtained from degradation in current [Figure 6.4 (c), (d)]. 

This is first component behind the change in open circuit voltage. So, the change in open-

circuit voltage due to ion migration is given by,  

𝛥𝑉𝑜𝑐,𝑖(𝑡) = 𝑉𝑑(1 − 𝑒
−

𝑡
𝑡𝑐𝑚) 

𝑉𝑑 = 𝑉𝑜𝑐,0 − 𝑉𝑜𝑐,𝑡=0 

Where, the open-circuit voltage if there is no ion present is given by [3],  

𝑉𝑜𝑐,0 =
𝑛𝑘𝑇

𝑞
ln (

𝐽𝐿

𝐽0
+ 1) 

𝐽0 =
15𝑞𝜎

𝑘𝜋4
𝑇2 ∫

𝑥2

𝑒𝑥 − 1
𝑑𝑥

∞

𝑢

; 𝑢 =
𝐸𝐺

𝑘𝑇
 

(ii) Decrease in open circuit voltage due to increase in non-radiative 

recombination: 

 

Figure 6.5: Band diagram explaining the second component of open-circuit 

voltage degradation, decrease in Voc due to increase in non-radiative 

recombination 

 

As ions are generated during exposure, these ions recombine with the generated 

electron hole pairs and there is an increase in non-radiative recombination. Due to increase in 

recombination the lifetime of electrons and holes will decrease. Thus, the open circuit voltage 

(6.4) 

 

(6.5) 

 

(6.6) 

 

(6.7) 

 

(6.8) 
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will decrease (Figure 6.5). The expression of open circuit voltage considering non-radiative 

recombination but no ion migration is given by [4],  

𝑉𝑜𝑐,𝑟 =
𝑘𝑇

𝑞
ln (

𝑁𝐵𝐽𝑠𝑐τ

𝑞𝑛𝑖
2𝑊

) 

Let’s assume  

▪ Lifetime of carriers and short circuit current at t=0 is τ𝑡=0 and 𝐽𝑠𝑐,𝑡=0 

▪ Lifetime of carriers and short circuit current at t=t is τ𝑡=𝑡 and 𝐽𝑠𝑐,𝑡=𝑡 

Assuming all other parameters are constant,  

Open-circuit voltage at time t=0,     

𝑉𝑜𝑐,𝑟,𝑡=0 =
𝑘𝑇

𝑞
ln (

𝑁𝐵𝐽𝑠𝑐,𝑡=0τ𝑡=0

𝑞𝑛𝑖
2𝑊

) 

And open-circuit voltage at time t=t,  

𝑉𝑜𝑐,𝑟,𝑡=𝑡 =
𝑘𝑇

𝑞
ln (

𝑁𝐵𝐽𝑠𝑐,𝑡=𝑡τ𝑡=𝑡

𝑞𝑛𝑖
2𝑊

) 

 

Decrease in 𝑽𝒐𝒄 due to non-radiative recombination,      

   𝛥𝑉𝑜𝑐,𝑟(𝑡) = 𝑉𝑜𝑐,𝑟,𝑡=0 − 𝑉𝑜𝑐,𝑟,𝑡=𝑡 =
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0τ𝑡=0

𝐽𝑠𝑐,𝑡=𝑡τ𝑡=𝑡
) 

The short circuit current density is given by,  

𝐽𝑠𝑐 = 𝑞𝐺(𝐿𝑛 + 𝐿𝑝) 

Where, Ln and Lp are diffusion lengths of electrons and holes respectively.  

     Assuming 𝐿𝑛 = 𝐿𝑝 = 𝐿,        𝐽𝑠𝑐 = 2𝑞𝐺𝐿 = 2𝑞𝐺√𝐷τ 

Here, τ is equivalent carrier lifetime and D is equivalent carrier diffusion coefficient. 

The short circuit current density at time t=0,  

(6.9) 

 

(6.10) 

 

(6.11) 

 

(6.12) 

 

(6.13) 

 

(6.8) 
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𝐽𝑠𝑐,𝑡=0 = 2𝑞𝐺√𝐷τ𝑡=0 

The short circuit current density at time t=t,  

𝐽𝑠𝑐,𝑡=𝑡 = 2𝑞𝐺√𝐷τ𝑡=𝑡 

The expression of ration between current densities between time t=0 to t=t becomes,  

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡

= √
τ𝑡=0

τ𝑡=𝑡

 

                 
τ𝑡=0

τ𝑡=𝑡
 = (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
)

2

 

Substituting the expression of ratio between lifetimes in the equation of change in open circuit 

voltage,  

𝛥𝑉𝑜𝑐,𝑟(𝑡) = 𝑉𝑜𝑐,𝑟,𝑡=0 − 𝑉𝑜𝑐,𝑟,𝑡=𝑡 = 3
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

Total Change in 𝑉𝑜𝑐 at time t=t,  

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑜𝑐,𝑡=𝑡 − 𝑉𝑜𝑐,𝑡=0 = 𝛥𝑉𝑜𝑐,𝑖 − 𝛥𝑉𝑜𝑐,𝑟 

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑑(1 − 𝑒
−

𝑡
𝑡𝑐𝑚) − 3

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

(6.14) 

 

(6.15) 

 

(6.16) 

 

(6.17) 

 

(6.18) 

 

(6.19) 

 

(6.20) 
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Figure 6.6: Comparison of normalized open-circuit voltage evolution and short-

circuit current degradation between experimental and simulated result obtained from our 

model. 

 

Figure 6.6 shows the comparison between experimental and simulated results over 100 

hours of photon-induced degradation for normalized open-circuit voltage and short-circuit 

current. This result shows that the experimental result matches very well with the simulation 

result. 

 

6.3 Proposed Circuit Model for Perovskite Solar Cells 

 

Figure 6.7: Modified equivalent circuit model of a perovskite solar cell (a) Ideal single diode 

mode (b) Proposed circuit model for perovskite solar cell considering both migration and 

generation of ions 

 

𝑅2=0.82 

𝑅2=0.92 
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Figure 6.7 (b) shows our proposed single diode circuit model for perovskite solar cells. 

Here, the modifications proposed is to add an additional dependent voltage source in series 

with the diode and dependent current source in parallel to the photo-generated current source 

from an ideal circuit model [Figure 6.7 (a)]. The magnitude of the dependent voltage source 

depends on amount of open-circuit voltage increase due to ion migration and amount of 

decrease in open-circuit voltage due to increase in non-radiative recombination. And the 

polarity can be either positive or negative depending on which of the two components is 

dominant. If ion migration dominates 𝑉𝑖(𝑡) > 0, on the other hand if non-radiative 

recombination dominates over ion migration 𝑉𝑖(𝑡) < 0. This can be explained by the following 

mathematical expressions:  

𝑉𝑖(𝑡) =  𝑉𝑑 (1 − 𝑒
−

𝑡
𝑡𝑐𝑚) − 3

𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡

) 

 As the degradation in current follows the double exponential model as described earlier 

in this chapter, the dependent current source has the following expression,  

𝐼𝑖(𝑡) =  𝐼𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡
𝑡𝑐𝑚) + 𝑎𝑔 (1 − 𝑒

−
𝑡

𝑡𝑐𝑔)] 

The total current extracted from the solar cell is given by,  

𝐼 = 𝐼𝐿 − 𝐼𝑖 − 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉 − 𝑉𝑖)

𝑛𝑘𝑇
) − 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 

Figure 6.8 shows the simulated light IV using the equivalent circuit diagram in Fig. 3 

before and after degradation along with the experimental results obtained on the p-i-n solar 

cell. The mismatch in light IV after degradation between actual and simulated result comes 

(6.21) 

 

(6.22) 

 

(6.23) 
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from the degradation in series and shunt resistance which we ignored in our equivalent circuit 

model. 

 

Figure 6.8: Comparison of Light IV curves simulated using the equivalent circuit 

model [Figure 6.7(b)] before and after degradation for 100 hours at one-sun intensity with 

the experimental Light IV curves 

 

Finally, both generation and migration of ions contribute to the photon-induced 

degradation of perovskite solar cells. The degradation in short-circuit current density can be 

modeled using a double-exponential model which explains both migration and generation of 

ions. The change in open-circuit voltage can be explained by two opposing components: open-

circuit voltage increases due to migration from ions from perovskite-transport layers’ 

interfaces towards bulk perovskite and decreases with increase in non-radiative recombination. 

These factors can be considered with a dependent current source in parallel with the photo-

generated current source and a dependent voltage source in series with the diode to have 

complete equivalent circuit for perovskite solar cells. 
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CHAPTER 7.    FACTORS THAT AFFECT PHOTON-INDUCED DEGRADATION 

OF PEROVSKITE SOLAR CELLS 

7.1 Introduction 

There are several factors that affect this photo-instability and recovery 

➢ The contact layers 

➢ Stoichiometry (Ratio between MAI:𝑃𝑏𝐼2)  

➢ The biasing condition at which the device is kept during degradation 

➢ The fabrication procedure (Solution vs Vapor)    

➢ Grain size of perovskite (active layer)   

 

7.2 Comparison Between Different Hole Transport Layers (NiO vs PTAA) 

 

Figure 7.1: Device structure and corresponding band edges; PTAA as hole transport 

layer (left), NiO as hole transport layer (right) 
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Figure 7.2: Photovoltaic parameters before photon-induced degradation; Light IV 

characteristics (left), External quantum efficiency and integrated short-circuit current 

density as a function of incident photon wavelength (right); Red line represents PTAA as 

HTL and Blue line represents NiO as HTL 

 

Figure 7.1 shows the device structure and corresponding band edges of two devices 

which have been used for this comparison study. The fabrication method described in chapter 

5 has been followed to fabricate these devices. Two additional layers (CdS and ZnO) as 

electron transport layers have been used as buffer layers. The reason behind using these buffer 

layers have been discussed in section 7.3.  

Table 7.1: Photovoltaic parameters for perovskite solar cells on different HTL 

𝑯𝑻𝑳 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

NiO 1.05 20.7 71 15.5 

PTAA 1.11 21.7 76 18.4 

 

Figure 7.2 shows the light IV characteristics along with external quantum efficiency 

and integrated current density of those two devices. The photovoltaic parameters before 

photon-induced degradation has been given in table 7.1. The photo conversion efficiency of 

the device fabricated on PTAA as hole transport layer is about 18.4% and on NiO as hole 

transport layer is about 15.3% before photon induced degradation. None of the devices showed 
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any hysteresis in light IV measurement. PTAA has higher transmission [Figure 7.3(b)]. Thus, 

device fabricated on PTAA shows higher short-circuit current density than NiO. The SEM 

images in figure 7.3(a) which shows the topography of perovskite films fabricated on NiO and 

PTAA, suggests that there is no significant difference in grain size which can also play a role 

in photon induced degradation. Both have perovskite grain sizes in the range of about 200-400 

nm. 

 

Figure 7.3: (a) SEM images shows the topography of perovskite films deposited on 

PTAA and NiO (b) Comparison in transmittance at different wavelengths between PTAA and 

NiO 

 

Then we measured photon-induced degradation on these two types of p-i-n devices in 

open circuit condition up to 100 hours under one-sun illumination with AM1.5 spectra for 

comparative study [figure 7.4].  The key features from this photon-induced degradation are: 
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➢ The open-circuit voltage for the solar cell on PTAA decreases with time under 

continuous illumination, while the open-circuit voltage increases for the cell fabricated 

on NiO. 

➢ The short-circuit current degrades more for the cell fabricated on PTAA compared to 

the cell fabricated on NiO. 

➢ Thus, the power conversion efficiency degradation for the cell with PTAA as hole 

transport layer is much higher than power conversion efficiency degradation with NiO. 

 

Figure 7.4: Photon-induced degradation comparison of these two p-i-n devices under 

one-sun intensity (AM1.5) for 100 hours (a) Normalized open-circuit voltage degradation (b) 

Normalized short-circuit current degradation (c) Fill-factor degradation (d) Degradation in 

power conversion efficiency 

 

But, encouraging sign is that both devices, either on PTAA or NiO as hole transport 

layer has recovered in dark. The solar cell fabricated on PTAA has completely recovered in 

43 hours at room temperature after light exposure for 100 hours at one sun intensity. And the 

device fabricated on NiO completely recovered after it was kept in dark for 13 hours at room 
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temperature. The light IV characteristics of these devices before exposure, after exposure and 

after recovery has been showed in figure 7.5. 

 

Figure 7.5: Light IV degradation and recovery in dark (a) fabricated on PTAA as 

HTL (b) fabricated on NiO as HTL 

 

The photo-degradation can be explained by using the ion generation and migration 

theory during photo-exposure as explained in chapter 6. The change in open-circuit voltage 

can be explained by two components: increase in open-circuit voltage due to migration of ions 

from interfaces to bulk perovskite and decrease in open-circuit voltage due to increase in non-

radiative recombination. The change in open-circuit is given by,  

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑑(1 − 𝑒
−

𝑡
𝑡𝑐𝑚) − 3

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡

) 

The 𝑉𝑑 for the device fabricated on NiO is 0.07 V and for the device fabricated on 

PTAA is 0.01 V. The time constant for the migration of ions from interfaces to the bulk 

perovskite is 2 hours. The open-circuit voltage for the device fabricated on NiO increases over 

time during photon-induced degradation as migration of ions dominates the generation of ions. 

But for the device with PTAA as HTL, the open-circuit voltage decreases because the 

generation of ions dominates the migration of ions during photon-induced degradation.  

(7.1) 
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Also, the short-circuit current degradation follows the double exponential model as 

showed in chapter 6. The degradation in short-circuit current is given by,  

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

 
For NiO the values which can describe the short-circuit current degradation are: 𝑡𝑐𝑚= 2 

hours, 𝑎𝑚= 0.084 𝑚𝐴𝑐𝑚−2,  𝑡𝑐𝑔=20 hours,  𝑎𝑔=0.084 𝑚𝐴𝑐𝑚−2. For PTAA the values which can 

describe the short-circuit current degradation are: 𝑡𝑐𝑚= 2 hours, 𝑎𝑚= 0.15 𝑚𝐴𝑐𝑚−2,  𝑡𝑐𝑔= 42 

hours,  𝑎𝑔= 0.3 𝑚𝐴𝑐𝑚−2. The change in higher degradation in short-circuit current for the device 

fabricated on PTAA than fabricated on NiO can be explained by higher transmission of PTAA 

than NiO, especially in the high energy regime. This allows to generate more ions during photon-

induced degradation.  

 

Figure 7.6: Comparison of normalized change in open-circuit voltage and short-

circuit current degradation between experimental and simulated result obtained from our 

model 

 

Figure 7.6 shows the comparison between experimental and simulated results over 100 

hours of photon-induced degradation for normalized open-circuit voltage and short-circuit 

current. Figure 7.7 shows the simulated light IV using the equivalent circuit diagram in Figure 

(7.2) 

 

𝑅2=0.82 

𝑅2=0.92 

𝑅2=0.92 

𝑅2=0.99 
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6.7 before and after degradation along with the experimental results obtained on the p-i-n solar 

cell. The mismatch in light IV after degradation between actual and simulated result comes 

from the degradation in series and shunt resistance which we ignored in our equivalent circuit 

model. 

 

Figure 7.7 Comparison of Light IV curves simulated using the equivalent circuit 

model (Figure 6.7) before and after degradation for 100 hours at one-sun intensity with the 

experimental Light IV curves (a) on NiO (b) on PTAA 

 

Some very interesting results can be deduced from the External Quantum 

Efficiency(EQE) degradation during exposure at 1X intensity and recovery in dark afterwards. 

The External quantum efficiency comparison for both device structures suggest that there is 

almost uniform drop down of quantum efficiency compared to the QE before exposure over 

the visible wavelength range. This result suggests that during degradation the reason behind 

decrease in short-circuit current is decrease in carrier life-time with increase in Ion density. So, 

this is an indirect proof that the generated carriers can recombine with generated ions 

considering there is no significant change in absorption during light exposure. 
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Figure 7.8: External Quantum Efficiency recovery after photon-induced degradation 

for 100 hours at one-sun (AM1.5) intensity; Fabricated on PTAA (left) and Fabricated on 

NiO (right) 

 

Now, if we define a parameter QE ratio for a given wavelength and is calculated as,  

𝑄𝐸 𝑟𝑎𝑡𝑖𝑜 (𝜆) =  
𝐸𝑄𝐸 𝐴𝑓𝑡𝑒𝑟 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝜆)

𝐸𝑄𝐸 𝐵𝑒𝑓𝑜𝑟𝑒 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝜆)
 

 

 

Figure 7.9: QE Ratio as a function of incident photon wavelength (nm) 

 

There is significant difference in evolution of QE ratio with wavelength for devices 

with PTAA and NiO (Figure 7.9). The results above 800nm is very noisy as it is expected to 

have a very low absorption. It is expected that most of the higher energy photons are absorbed 

(7.3) 
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very close to the hole transport layer as the absorption coefficient is higher for higher energy 

photons. The QE ratio is almost flat with wavelength for device fabricated on PTAA which 

suggests that ion density distribution is almost uniform over the thickness of perovskite. But, 

there is a gradual increase in QE ratio with wavelength for the device fabricated on NiO. This 

result suggests that collection efficiency is lower at NiO-Perovskite interface and higher at 

Perovskite-PCBM interface. This is possible if there is a gradient in ion density with perovskite 

thickness. In other words, the density of generated ions gradually decreases from NiO to 

PCBM over perovskite thickness. Thus, there is more recombination of generated carriers near 

NiO-Perovskite interface than Perovskite-PCBM interface. 

 

Figure 7.10: Capacitance vs Voltage profile recovery after photon-induced 

degradation for 100 hours at one-sun (AM1.5) intensity; Fabricated on PTAA (left), 

Fabricated on NiO (right) 

 

There seems to be no significant difference in Capacitance Vs Voltage response on 

both device structures. The capacitance vs voltage response shifts to the right after light 

exposure for 100 hours at 1X intensity. The shift to the right indicates the migration of ions 

from the interfaces towards the bulk perovskite as explained by Pranav et al. [1,2,3]. Then it 

slowly recovers in dark. And the device fabricated on NiO completely recovered after it was 

kept in dark for 13 hours at room temperature. 
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7.3 CdS/ZnO as Buffer Electron Transport Layers 

 

Figure 7.11: Device structures with corresponding band edges used in this experiment (a) 

With CdS/ZnO as buffer layers (b) With no buffer layers 

 

Figure 7.11 shows the device structure and corresponding band edges which are being 

compared for this photo-degradation study. One of them [Figure 7.11(a)] has two extra layers 

Indium doped Cadmium Sulfide and Aluminum doped Zinc Oxide which work as buffer 

layers. The other device [Figure 7.11(b)] doesn’t have these two extra layers. Both the devices 

showed above have similar efficiencies to start with. The device with CdS/ZnO as buffer layer 

has a starting power conversion efficiency of 18.4% and the control device had power 

conversion efficiency of about 17.8%. To make sure that all the changes are due to photon-

induced degradation we have a reference contact with similar efficiency which doesn’t show 

any degradation over time in dark. The photovoltaic parameters of these three devices before 

any degradation has been reported in Table 7.2. None of the devices showed any hysteresis in 

light IV measurements. Figure 7.12 shows the initial light IV measurement before photon-

induced degradation and absolute external quantum efficiency measurements of these devices. 

(a) (b) 
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Figure 7.12: (a) Light IV measurements before photon-induced degradation (b) Absolute 

external quantum efficiency and integrated current density for both devices before photon-

induced degradation; Red represents Light IV for device with CdS/ZnO as buffer layers, Blue 

represents Light IV for device with no buffer layers 

 

Table 7.2: Photovoltaic parameters for perovskite solar cells before photon induced 

degradation 

𝑫𝒆𝒗𝒊𝒄𝒆 𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as buffer layers 1.11 21.7 76 18.4 

No buffer layers-Degraded contact 1.11 21.3 75 17.8 

No buffer layers-Reference contact 1.11 21 76 17.7 

 

 

The photo-degradation comparison for these two devices has been measured at open-

circuit condition for 100 hours at one-sun intensity (AM1.5).  Figure 7.13 shows that both 

degraded almost similarly over 100 hours. Table 2 shows that degradation of all the 

photovoltaic parameters are comparable after 100 hours of photon-induced degradation.  

(a) (b) 
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Figure 7.13:  Photo-degradation summary for 100 hours at one-sun intensity (AM1.5) (a) 

Device with CdS/ZnO as buffer layer (b) Device with no buffer layers 

Table 7.3: Photon-induced degradation (in percentage) of photovoltaic parameters after 

exposing for 100 hours at 1 sun intensity in open-circuit condition 

𝑫𝒆𝒗𝒊𝒄𝒆 𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as buffer layers 4% 45% 24% 58% 

No buffer layers-Reference contact 4% 45% 20% 57% 

*Note: All the parameters decrease with time during photon induced degradation 

 

The interesting factor is that the device which had CdS and ZnO as buffer layers has 

completely recovered after kept in dark for 43 hours [Figure 7.14(a)]. But the device which 

didn’t have CdS and ZnO as buffer layers didn’t recover even after 43 hours in dark [Figure 

7.14(b)]. 

(a) (b) 
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Figure 7.14: Light IV recovery in dark after photon-induced degradation for 100 hours at 

one-sun intensity (AM1.5) (a) Device with CdS/ZnO as buffer layers (b) Device with no 

buffer layers 

 

But the reference device in Figure 7.15 shows no change during this period which 

proves that all these changes are due to photon-induced degradation only. The photovoltaic 

parameters of these devices before degradation, after degradation and after recovery in dark 

have been reported in Table 7.4. 

 

Figure 7.15: Light IV characteristics of the reference device which shows no change during 

this period 

 

(a) (b) 
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Table 7.4: Photovoltaic parameters comparison for perovskite solar cells before and after 

degradation along with after recovery 

𝑫𝒆𝒗𝒊𝒄𝒆  
𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 

 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as 

buffer layers 

Before Degradation 1.11 21.7 76 18.3 

After Degradation 1.06 12.1 59 7.6 

After Recovery 1.10 21.7 75 17.9 

No buffer layers-

Degraded contact 

Before Degradation 1.11 21.3 75 17.8 

After Degradation 1.07 11.7 61 7.6 

After Recovery 1.07 14 69 10.3 

No buffer layers-

Reference contact 

Before Degradation 1.11 21 76 17.7 

After Degradation 1.11 20.8 76 17.6 

After Recovery 1.11 20.5 77 17.5 

 

These photo-degradation and recovery results can be explained by the simplified band-

diagrams showed in Figure 7.16 and using the explanation by Lee et al. that iodine ions can 

contaminate the metal contacts leading to a permanent degradation for these devices [4]. This 

figure explains the recovery in dark after photo-degradation for devices with and without 

CdS/ZnO as blocking layers. At thermal equilibrium, due to built-in E-filed positive ions go 

towards hole transport layer (HTL) and negative ions go towards electron transport layer (ETL) 

[Figure 7.16 (a) and (d)]. So, we have net electric field inside the active layer. Due to high 

electric field at the interfaces these ions do not recombine with generated electron-hole pairs. 

During exposure in open-circuit condition, due to decrease in internal E-field these ions 

migrate towards the intrinsic active layer. And in addition to that more ions are generated by 

high energy photons [Figure 7.16 (d) and (e)]. The generated electron hole pairs recombine 

with the ions to contribute to current loss. 
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Figure 7.16: Band diagrams to explain recovery in dark after photo-degradation (a),(b),(c) 

migration and generation of ions during photo-degradation followed by recovery in dark 

where CdS/ZnO as blocking layer which helps the device to recover completely even after 

photo-degradation for 100 hours  at one-sun intensity (d),(e),(f) migration and generation of 

ions during photo-degradation followed by recovery in dark where there is no CdS/ZnO 

buffer layer. During recovery, the Aluminum contact is contaminated by iodine ions as they 

migrate through PCBM layer. Thus, the device doesn’t recover after photo-degradation for 

100 hours at one-sun intensity 

 

Just after exposure [Figure 7.16 (c) and (f)] there are more mobile ions present inside 

bulk perovskite. During recovery, there is sudden increase in electric field from the ETL to 

HTL inside bulk perovskite. And as the activation energy of migration for iodine ions is lowest 

[5] and so, they are very easy to migrate. During recovery, suddenly the negative ions’ 

concentration at Perovskite-PCBM interface increases. These ions have high enough energy to 

punch through PCBM and react with Aluminum [Figure 7.16 (f)]. As these iodine ions 

contaminate Aluminum contact permanently, the series resistance and short circuit current 

don’t recover. But in case of the device with CdS and ZnO, these iodine ions are blocked by 
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these buffer layers [Figure 7.16 (c)]. Consequently, this device completely recovers as the 

Aluminum contact doesn’t get contaminated by iodine ions. 

     

Figure 7.17: Capacitance vs Voltage profile recovery after photon-induced 
degradation for 100 hours at one-sun (AM1.5) intensity; With CdS/ZnO as blocking layers 

(left), With no CdS/ZnO (right) 
 

The CV profile looks similar before and after exposure but, it completely recovered for 

the device with CdS/ZnO as buffer layer and didn’t recover for the device with no CdS/ZnO. 

So, CdS/ZnO act as a buffer layer which helps the perovskite solar cells to recover after photon-

induced degradation as these layers block the mobile iodine ions to react with the Aluminum 

contact. 

7.4 Effect of Stoichiometry on Photon-induced Degradation 

For this study, solar cells were fabricated with different molar ratio between 

𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 in the precursor perovskite solution for photon-induced degradation study. 

The device structure and power conversion efficiencies of perovskite solar cells with different 

molar ratio (1, 1.025, 1.05, 1.075 & 1.10) have been reported in figure 7.18 and Table 7.5. 
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Figure 7.18: (a) Device structure and band edges of perovskite solar cell, light IV along with 

power conversion efficiencies for devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar 

ratio (b) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1 (c) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025 (d) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.05 (e) 
[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.075 and (f) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.10. The solid line represents light IV scanned 

from low to high bias and dotted line represents light IV scanned from high to low bias. None 

of the light IV measurements show any hysteresis. 

Table 7.5: Photovoltaic parameters for perovskite solar cells fabricated with different 

stoichiometry 

[𝑷𝒃𝑰𝟐]/[𝑴𝑨𝑰] 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

1* 1.07 21.6 68 15.7 

1.025** 1.11 21.8 74 18.0 

1.05 1.11 21.3 75 17.7 

1.075 1.12 20.1 74 16.7 

1.10** 1.11 22 75 18.4 
Note: Measured *4 minutes & **2 minutes after exposing under 1X(AM1.5) intensity 

 

We studied the photon-induced degradation of these devices for 100 hours under 1 sun 

intensity (AM1.5) in open-circuit condition. The photon-induced degradation and comparison 

among degradation in short-circuit current density over 100 hours have been reported in figure 
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7.19. The key take-away from this photon-induced degradation study is that the degradation 

decreases relative increase in 𝑃𝑏𝐼2 before it reaches a minimum and then again increases with 

relative increase in 𝑃𝑏𝐼2 . The normalized degradation in short-circuit current density after 100 

hours as a function of  𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 malor ratio has been reported in figure 7.20. The 

degradation index has been calculated as, 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐽𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (𝑡 = 100 𝐻𝑜𝑢𝑟𝑠) = 1 −
𝐽𝑠𝑐,𝑡=100 ℎ𝑜𝑢𝑟𝑠

𝐽𝑠𝑐,𝑡=0
 

 

This photon-induced degradation has been repeated several times with different 

stoichiometry and the cumulative standard error of experiment for this degradation index was 

calculated as 0.016. This standard error has been used as error bar in figure 7.20. This result 

can be explained considering both migration and generation of ions during photon induced 

degradation. The stoichiometry of perovskite precursor solution can affect the initial density 

of ions at perovskite-transport layer interfaces (figure 7.21). When we have used 1:1 molar 

ratio between 𝑃𝑏𝐼2 𝑎𝑛𝑑 𝐶𝐻3𝑁𝐻3𝐼 there some positive 𝑀𝐴+ and negative 𝐼− ions present 

inside bulk perovskite as according to Walsh et al. this kind of decomposition has lowest 

formation energy. Thus, the formation of perovskite along with formation of initial ions can 

be explained by the following chemical reaction: 

𝑎 ∗ 𝑀𝐴𝐼 +  𝑎 ∗ 𝑃𝑏𝐼2  𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 

𝑎, 𝑦   and 𝑧   are all constants. 

In presence of internal electric-field the positive 𝑀𝐴+ions migrate towards the 

perovskite-HTL interface and negative 𝐼− ions migrate towards perovskite-ETL interface 

(Figure 7.21). Because of very high electric field at the interface these ions do not recombine 

with photo-generated electron-hole pairs. Thus, the initial short-circuit current density before 

exposure is not affected by this interface trapped ions. But, during the photon-induced 
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degradation in open-circuit condition these ions can migrate towards the neutral perovskite 

region. There are more ions generated by high energy photons. These ions in bulk perovskite 

act as recombination centers for photo-generated electron-hole pairs. Thus, the reduction in 

collection efficiency leads to the degradation in short-circuit current density.  

Now, if we increase the relative concentration of 𝑃𝑏𝐼2 in the perovskite precursor 

solution, these excess of 𝑃𝑏𝐼2 can shift the chemical reaction to reduce initial ion densities by 

forming more perovskite atoms. This phenomenon can be explained by the following chemical 

reaction: 

𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 + 𝑥1 ∗ 𝑃𝑏𝐼2  𝑦′*(𝑀𝐴+ + 𝐼−)   + 𝑧′ * 𝑀𝐴𝑃𝑏𝐼3 

Here, 𝑦  , 𝑧  , 𝑥1, 𝑦′ and 𝑧′ are all constants. Also, 𝑦′ <  𝑦   and 𝑧   <  𝑧′. 𝑥1 represents 

the excess of 𝑃𝑏𝐼2 .  

Lower initial ion densities at the interfaces leads to lower degradation in short-circuit 

current density. As we have seen when the 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio changes from 1 to 

1.025 the normalized degradation in short-circuit current density decreases. If we keep 

increasing the relative concentration of 𝑃𝑏𝐼2 at some point we can eliminate the initial densities 

of ions trapped at the interfaces and the degradation in short-circuit current density reaches 

minimum (Figure 7.21). That chemical reaction can be illustrated from the following equation: 

𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 + 𝑥 ∗ 𝑃𝑏𝐼2  𝑧′′ * 𝑀𝐴𝑃𝑏𝐼3 

Here, 𝑦  , 𝑧  , 𝑥 and 𝑧′′ are all constants. Also, 𝑧   <  𝑧′′. 𝑥  represents the excess of 

𝑃𝑏𝐼2 .  

If we keep increasing the relative concentration of 𝑃𝑏𝐼2 then we are adding excess of 

𝑃𝑏𝐼2 which can easily decompose and introduce negative 𝐼− ions (Figure 7.21). Thus, the 

degradation in short-circuit current density will again increase as illustrated in figure 7.20. 
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In figure 7.22 we can show that the normalized degradations in short-circuit current 

density for different stoichiometry can be fitted with a double-exponential equation as,  

𝐽𝑠𝑐(𝑡) = 𝐽𝑠𝑐,𝑡=0 − 𝛥𝐽𝑠𝑐 

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

With boundary conditions, 

(𝑖) 𝑎𝑚+ 𝑎𝑔=
𝛥𝐽𝑠𝑐

𝐽𝑠𝑐,𝑡=0
 |𝑡→∞        (𝑖𝑖)𝛥𝐽𝑠𝑐= 0 at t=0 

Table 7.6 shows the value of coefficients that has been used to fit the normalized 

degradation in short-circuit current density. It is understandable why we need two exponentials 

to fit the short-circuit current degradation if we consider both migration and generation of ions 

contribute in this photon-induced degradation. We can consider the first exponential takes care 

of the migration of ions with a time constant of 𝒕𝒄𝒎 and a magnitude of 𝒂𝒎 . And the second 

exponential models the generation of ions with a time constant of 𝒕𝒄𝒈 and a magnitude of 𝒂𝒈. 

As 𝒂𝒎 is a function of initial ion densities it should have high correlation with degradation in 

short-circuit current density of devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio.  

FIG. 6(c) shows the correlation between 𝒂𝒎 and Normalized short-circuit current degradation 

after 100 hours. As the figure shows, they can be fitted with a straight line with 𝑅2 = 0.91. 

This indicates that they have a very high correlation.  

(7.4) 

 

(7.5) 
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Figure 7.19: Photon-induced degradation for 100 hours at 1 sun intensity (AM1.5) in open 

circuit condition for devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio. Here all 

the values are normalized with respect to the values at time, t=0. (a) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1 (b) 
[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025 (c) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.05 (d) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.075 and (e) 

[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.10 (f) Comparison in short-circuit current degradation among devices with 

different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 

 

 

Figure 7.20: Normalized short-circuit current degradation at t=100 hours as function of 

𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜. The error bar has been calculated from the cumulative 

standard error  
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Figure 7.21: Schematic illustration of change in interface charge densities with relative 

increase in 𝑃𝑏𝐼2 with respect to 𝐶𝐻3𝑁𝐻3𝐼 

 

Table 7.6: Parameters for fitting 𝐽𝑠𝑐 degradation with double-exponential model 

[𝑷𝒃𝑰𝟐]/[𝑴𝑨𝑰] 𝒂𝒎 𝒕𝒄𝒎(𝒎𝒊𝒏𝒖𝒕𝒆𝒔) 𝒂𝒈 𝒕𝒄𝒈(𝒎𝒊𝒏𝒖𝒕𝒆𝒔) 𝑹𝟐 

1 0.53 120 0.10 2500 0.90 

1.025 0.34 120 0.27 2500 0.97 

1.05 0.15 120 0.30 2500 0.99 

1.075 0.25 120 0.30 2500 0.99 

1.10 0.35 120 0.25 2500 0.99 

 

 

 

Figure 7.22: Fitting 𝐽𝑠𝑐 degradation with double-exponential model (a) [𝑃𝑏𝐼2]/
[𝑀𝐴𝐼]=1,1.05,1.10 (b) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025,1.075. The solid lines represent fitted line with 

double exponential and dotted lines represent experimental normalized 𝐽𝑠𝑐 degradation. (c) 

The correlation plot between Ion migration coefficient (𝑎𝑚) and Normalized 𝐽𝑠𝑐 degradation 

after 100 hours 
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In summary, the stoichiometry of perovskite precursor solution can affect the photon-

induced degradation as the ion densities at the interfaces is a dependent on  𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 

molar ratio. We need to find the optimum value of this molar ratio which will minimize the 

degradation in short circuit current density. 

 

7.5 Photo-degradation at Different Biasing Conditions (Open vs Short) 

The difference in biasing condition during photo-degradation also plays an important 

role in degradation of device performance because the basing condition affects ion migration. 

In this experiment, I have used the control device with [𝑃𝑏𝐼2] 𝑡𝑜 [𝑀𝐴𝐼] ratio of 1.05 (or 5% 

excess of 𝑃𝑏𝐼2). I have performed photon-induced degradation on two contacts of the same 

devices kept at two different biasing conditions during illumination (open-circuit and short-

circuit). The device structure used for this experiment has been given in figure 7.23.  

 

Figure 7.23: Device structure used for the photon-induced degradation at different 

biasing conditions 
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Figure 7.24: Light IV characteristics for the contacts used for photon-induced 

degradation study at different biasing conditions; open-circuit exposure (left), short circuit 

exposure (right). Both are identical to start with. 

 

Figure 7.24 shows the light IV characteristics of the contacts used in this experiment 

before photon-induced degradation. The photovoltaic parameters are identical for both the 

devices. 

 

Figure 7.25: Photo-degradation comparison for devices exposure with different 

biasing conditions (a) Exposure in open-circuit condition (b) Exposure in short-circuit 

condition 
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Table 7.7: Photon-induced degradation (in percentage) of photovoltaic parameters after 

exposing for 100 hours at 1 sun intensity  

𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

Open-circuit Exposure 4% 45% 24% 58% 

Short-circuit Exposure 4.5% 32.5% 3.6% 37% 

*Note: All the parameters decrease with time during photon induced degradation 

 

Figure 7.25 shows the photon-induced degradation in open-circuit condition [Figure 

7.25 (a)] and in short-circuit condition [Figure 7.25 (b)]. And the decrease in photovoltaic 

parameters after 100 hours of degradation has been reported in table 7.7. 

 

Some key take-away points from this photo-degradation are: 

➢ The open-circuit voltage degradation is similar for both cases considering photon-

induced degradation either in open circuit or short circuit basing condition. 

➢ The short-circuit current degrades more in case of open circuit degradation than short 

circuit degradation condition. 

➢ Thus, the power conversion efficiency degradation for the cell exposed in open circuit 

condition is much higher than power conversion efficiency degradation for the cell 

exposed in short circuit condition. 

Figure 7.26 shows the pairwise comparison of open-circuit voltage and short-circuit 

current degradation at two biasing conditions.  
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Figure 7.26: Photon induced degradation comparison for 100 hours at one-sun (AM 1.5) 

intensity (a) Short-circuit current degradation (b) Open-circuit voltage degradation 

 

 

 

Figure 7.27 Band diagrams to explaining photon-induced degradation in both biasing 

conditions (a),(b),(c) Degradation in open circuit condition (d),(e),(f) Degradation in short 

circuit condition 

𝑶𝒑𝒆𝒏 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 𝑺𝒉𝒐𝒓𝒕 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 
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This change in photo-degradation can be explained from the following band-diagram 

and using our model on photo degradation in figure 7.27. 

 

7.5.1 Explanation for short circuit current degradation 

At thermal equilibrium, due to built-in E-filed positive ions go towards hole transport 

layer (HTL) and negative ions go towards electron transport layer (ETL). So, we have net 

electric field inside the active layer [Figure 7.27 (a) & (d)]. Due to high electric field at the 

interfaces these ions do not recombine with generated electron-hole pairs. During exposure in 

open circuit condition the active layer is almost in flat band condition. Due to decrease in 

internal E-field these ions migrate towards the intrinsic active layer [Figure 7.27 (b)]. In 

addition to that, more ions are generated by photons [Figure 7.27 (c)]. These ions recombine 

with generated electron-hole pairs resulting in short circuit current degradation. But in case of 

short circuit exposure, there is still high electric field inside the active layer. Because of this 

high internal electric field ions from contact layers can’t migrate towards the intrinsic layer 

[Figure 7.27 (e)]. Still there is generation of ions by high energy photons during exposure 

[Figure 7.27 (f)]. The short circuit current degrades because of recombination of generated 

electron-hole pairs with these generated ions. As the interfacial ions don’t contribute to short 

circuit current degradation, the degradation of short circuit current in case of short circuit 

exposure is significantly lower than degradation in open circuit condition. 

 

7.5.2 Explanation for open circuit voltage degradation 

From the photo-degradation results, the degradation of open circuit voltage is similar 

for both cases. This result can also be explained from our photo-degradation model. Recalling 
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our model on open-circuit voltage degradation, there are two components which play a role in 

open circuit voltage evolution during light exposure: 

➢ Increase in open circuit voltage due to migration of ions from contact layers to the bulk 

➢ Decrease in open circuit voltage due to increase in non-radiative recombination 

In short circuit condition, the ions do not migrate from interfaces to the bulk region. 

So, the contribution in increase in open circuit voltage due to ion migration is zero (this can be 

clearly proved from the capacitance-voltage profile presented in figure 7.28). In other 

words, 𝑽𝒅 = 𝟎 in our model. But the open-circuit voltage still decreases because of increase 

in non-radiative recombination inside bulk perovskite. But the effect of this non-radiative 

recombination component is lower in case of short circuit exposure compared to open circuit 

exposure as there is less recombination. 

In case of open circuit degradation, the ions from interfacial layers migrate towards the 

bulk perovskite. So, there is a positive contribution of ion migration in increase in open circuit 

voltage (again this can be proved from the capacitance-voltage profile presented figure 7.28). 

In other words, 𝑽𝒅 > 𝟎 in our model. In addition to that open-circuit voltage still decreases 

because of increase in non-radiative recombination inside bulk perovskite. But the effect of 

this non-radiative recombination component is higher in case of open circuit exposure 

compared to short circuit exposure as there is higher degree of recombination. 
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Figure 7.28: Capacitance-Voltage recovery after photon induced degradation for 100 

hours at one-sun (AM 1.5) intensity (a) Exposure in open-circuit condition (b) Exposure in 

short-circuit condition 

 

But result shows that there is no difference in open circuit voltage degradation. This 

can be explained because in short circuit condition the open-circuit voltage doesn’t increase 

due to ion migration but it also decreases less due to less non-radiative recombination. And in 

open circuit condition open circuit voltage increases due to ion migration but it also decreases 

more due to higher decrease in open circuit voltage due to higher non-radiative recombination. 

These two components add up and results in similar degradation in open circuit voltage. This 

can also be proved from the simulation result on our model presented later in figure 7.29. 

From the Capacitance vs Voltage profile in figure 7.28, during open circuit photo 

degradation the CV profile shifts to the right (in other words, capacitance decreases at higher 

bias) which suggests an increase in net built-in potential due to ion migration from contact 

layers to bulk perovskite. In short circuit photo degradation, there is no significant shift of CV 

profile (or decrease in capacitance after exposure) which validates our assumption that there is 

no significant ion migration after exposure in this condition. Recovery condition for the cell 
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exposed in open circuit condition is 41 hours at room temperature in dark and the cell exposed 

in short circuit condition in 38 hours at room temperature in dark. 

 

Figure 7.29: Comparison between experimental results to simulated results for open-

circuit voltage degradation for 100 hours at one-sun (AM1.5) intensity 

 

Figure 7.29 shows the comparison of open-circuit voltage degradation between the 

experimental and simulated result from our model. For short-circuit exposure the component 

of increase in open circuit voltage due to ion migration, 𝑉𝑑 is zero. And for open circuit 

exposure the calculated  𝑉𝑑 = 0.01V. For both photo-degradation conditions the simulated 

results match well with experimental results. 
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7.6 Effect of Fabrication Techniques of Perovskite (Solution vs Vapor) 

 

Figure 7.30: Device structure and starting efficiency of devices under consideration for 

photon-induced degradation comparison (a), (c) Co-evaporated perovskite (b), (d) 

Solution-processed perovskite (with 5% Excess PbI2) 

 

Both the devices have same structure. The only difference is that for the device left side 

perovskite is deposited using co-evaporation. The for right one perovskite was deposited using 

single-solution process. Another major difference is that the co-evaporated perovskite has a 

thickness of around 350 nm and solution processed perovskite has thickness of about 600 nm. 
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The starting efficiency for the co-evaporated perovskite device is about 14% and for the 

solution-processed perovskite is about 16%.     

The photo-degradation comparison between these two devices is given below: 

 

 

Figure 7.31: Photo-degradation comparison for 100 hours in open-circuit condition at one-

sun intensity (AM 1.5) (a) Co-evaporated perovskite (b) Solution processed perovskite with 

5% Excess PbI2 

 

Some key take-away points from this photo-degradation are: 

➢ The open-circuit voltage increases for the co-evaporated perovskite device and it 

decreases for solution-processed perovskite solar cell during open circuit exposure for 

100 hours at one-sun intensity. 

➢ The short-circuit current degrades more for solution processed device compared to 

vapor processed perovskite solar cells. 



www.manaraa.com

169 

➢ Thus, the power conversion efficiency degradation for the cell fabricated with solution-

processed perovskite is significantly higher compared to the solar cell fabricated with 

co-evaporated perovskite. 

The co-evaporated perovskite solar cell is one the most photo-stable solar cell ever 

recorded. Photo conversion efficiency degraded by only 5% over the 100 hours of photon 

induced degradation at one-sun intensity. 

Figure 7.32: Formation of quasi-neutral region in bulk perovskite (a) Co-evaporated 

perovskite (~350nm) (b) Solution-processed perovskite (~600nm) 

 

The difference in thickness of perovskite may be the reason behind lesser degradation 

for co-evaporated perovskite solar cell. At thermal equilibrium, due to built-in E-filed positive 

ions go towards ETL and negative ions go towards HTL. So, we have net electric field inside 

the active layer. The carrier transport is dominated by drift and so collection efficiency is 

determined by range, R = f(E). During photo-degradation the ions move to their original 

position and that forms a quasi-neutral region inside active layer. Now most of the photons are 

absorbed in the quasi-neutral region. In this region carrier transport is dominated by diffusion. 

During photo-degradation, a lot of ions are generated by high energy photons. Due to increase 
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in recombination the carrier life time decreases and the actual diffusion length becomes shorter. 

In case of solution processed perovskite as the optimum thickness is about 600 nm to achieve 

maximum power conversion efficiency and the length of quasi neutral region is longer than 

effective carrier diffusion length [Figure 7.32 (a)]. So, carrier collection efficiency decreases. 

Thus, short circuit current decreases. For vapor processed device the optimum thickness is 

about 350 nm to achieve maximum power conversion efficiency. Even if there might be a 

narrow quasi-neutral region but that might be within carrier diffusion length of perovskite 

[Figure 7.32 (b)]. Although ions are generated during exposure, because of high electric field 

the collection efficiency is still very high. Thus, there is no significant degradation in short 

circuit current and Fill factor in vapor processed device. 

 

7.7 Effect of Grain Size of Perovskite 

Grain size of perovskite plays a very significant role in photo-degradation. Higher grain 

size devices degrade slower. That suggests may be ions migrate through vulnerable grain 

boundaries and ions can generate easily at brain boundaries as the molecules are loosely bond 

(chemically). The activation energy for generating ions is lower at grain boundaries. Thus, 

lower grain size devices degrade more.  

A common way to increase the grain size of perovskite film is solvent annealing. The 

kinetics behind the mechanism of grain size enhancement has been explained Xiao et al. [6] 

and Liu et al. [7] as discussed in chapter 5. 

Figure 7.34 shows the spin-coating and solvent annealing of perovskite on NiO 

substrate. For the control device, the procedure includes that after spin coating perovskite 

solution the control device was thermally annealed at 100°C for 10 minutes. But in case of 
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solvent annealed device after spin coating perovskite it was annealed in presence of solvent 

(10 µL DMF in this case) [Figure 7.34]. 

 

Figure 7.33: Device structure of devices under consideration for photo-degradation 

comparison (a) Control device with smaller perovskite grain-size (b) Device with solvent 

annealed perovskite with larger grain size 

 

 

Figure 7.34: Schematic diagram (a) Spin-coating of perovskite on NiO substrate using single 

solution anti-solvent process (b) Solvent annealing of perovskite 
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Figure 7.35: SEM images of planner perovskite layer (a) Control perovskite shows grain size 

of about ~200 nm (b) Solvent annealed perovskite shows grain size of about ~600 nm 

 

The figure 7.35 also shows the SEM images on these two types of perovskite films. 

The control device has a grain size of about 200 nm. After solvent annealing process, the grain 

size increased by almost 3 times to about 600 nm. 

 

Figure 7.36: Starting efficiencies of devices under consideration for photo-degradation 

comparison (a) Light IV characteristics; solid-line represents the sweep direction from high-

low bias and dotted-line from low-high bias (b) External quantum efficiency. Control device 

has smaller (~200 nm) perovskite grain-size and device with solvent annealed perovskite has 

larger (~600 nm) grain size 
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Table 7.8: Photovoltaic parameters for perovskite solar cells with different grain-size 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

Control 1.03 19.6 75 15.1 

Solvent-annealed 1.04 20.5 74 15.7 

 

Figure 7.36 (a) shows the light IV characteristics of these two types of devices. Table 

7.8 shows the photo-conversion efficiencies for these devices before photon-induced 

degradation. Both the devices have similar efficiencies, which suggests that may be the grain 

boundaries in perovskite are passivated. Thus, the grain size may not influence the starting 

efficiency but affects the photo-stability significantly.  

 

Figure 7.37: Photon-induced degradation comparison for different perovskite grain-size 

devices (a) Short-circuit current density (b) Open-circuit voltage (c) Fill factor (d) Power-

conversion efficiency. This photon-induced degradation was done for 100 hours in open-

circuit condition at one-sun intensity (AM1.5) 
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The photon-induced degradation (Figure 7.37) change in photovoltaic parameters for 

both the control and solvent annealed devices. The result clearly showed that the control device 

has degraded more than solvent annealed device. 

 

 

 Some key take-away points from this experiment are: 

➢ The open-circuit voltage for the control device increases more than the solvent 

annealed under continuous illumination at one-sun intensity. 

➢ The short-circuit current degrades more for the control device than the solvent annealed 

perovskite device. 

➢ Thus, the power conversion efficiency degradation for the control device is much 

higher than power conversion efficiency degradation of solvent annealed device. 

 

Figure 7.38: Density of ions calculation by transient current method (a) Before 

exposure (b) After photon-induced degradation 

 

The faster decrease in short circuit current for control device is largely due to smaller 

grain size of perovskite. Because it several research groups have already showed that the ions 

are likely to migrate through the grain boundaries. Yuan et al. [10], Walsh et al. [9] and Eames 

et al. [8] showed that the activation energy for ion migration becomes about half if we consider 
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migration through crystal grain boundaries along with other migration sites. They also showed 

that at grain boundaries the formation energy also becomes lower as it is easier for ions to 

generate because of soft chemical bonding in grain boundary sites for smaller grain size 

polycrystalline film. Because of lower activation energy for ion migration it is easier for the 

ions to migrate from the contact layers to the bulk perovskite and in addition to that, because 

of lower formation energy it is likely that more ions are generated during light exposure for 

the smaller grain size devices. Thus, more ions are available for recombination with generated 

carriers. So, the smaller grain size devices show larger short circuit current degradation. 

Smaller grain-size perovskite has more grain boundaries and these grain boundaries assist the 

migration of ions. Thus, open-circuit voltage evolves more for the smaller grain-size perovskite 

device compared to larger grain-size device. The ion density measurement using transient 

current method [11] shows that solvent annealed device has lower initial ion density than 

control device [Figure 7.38].  

 

Figure 7.39: Capacitance-Voltage recovery after photon induced degradation for 100 hours 

at one-sun (AM 1.5) intensity in open-circuit condition (a) Control device with smaller 

perovskite grain-size (b) Device with solvent annealed perovskite with larger grain size 
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The CV profile [Figure 7.39] shows that capacitance decreases after exposure for both 

control and solvent annealed devices indicating an increase in net built-in potential due to ion 

migration. But for the control case the decrease in capacitance is higher than the solvent 

annealed device as smaller grain size assists the migration of ions [8,9,10]. The activation 

energy for ion migration is lower for the control device as it has smaller grain size. 
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CHAPTER 8.    CONCLUSION AND FUTURE WORK 

In this work, we have optimized device efficiency, studied material properties of 

perovskite, developed a complete physical model based on generation and migration of ions to 

understand the photon-induced degradation of perovskite solar cells and studied the influence 

of different factors which can affect the photon-induced degradation of perovskite solar cells. 

In this chapter, I will summarize my contribution, conclusion of my work and will propose 

future work based on this report.  

 

8.1 My Contributions and Conclusion 

8.1.1 Efficiency optimization of perovskite solar cell 

➢ We have optimized the power-conversion efficiency of a p-i-n structured solar 

cell with PTAA as hole transport layer using single solution method. The 

maximum efficiency obtained is 18.5% which is highest in the literature using 

single-solution process on PTAA as HTL. 

➢ We have performed systematic experiments to solve the spreading issue of 

Perovskite single-solution on PTAA. We have showed that pre-wetting the 

PTAA substrate before spin-coating of perovskite helps to minimize surface 

energy and improves spread-ability. Using this method, we could get pin-hole 

free uniform perovskite layer which improves reproducibility of these devices.  

➢ We have showed that by increasing 𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar ratio can help to mitigate 

the open-circuit voltage evolution. 

➢ We have also developed a solvent annealing process to enhance perovskite 

grain size. 
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8.1.2 Physical parameters of perovskite 

➢ We have calculated the dielectric constant of perovskite by using capacitance 

spectroscopy and showed that the dielectric constant is about 60. 

➢ We have calculated the optimum electric field required to initiate ion migration 

in a n-i-p structured perovskite solar cell and showed that the optimum E-field 

is about 1 𝑉µ𝑚−1. 

8.1.3 Photon-induced degradation of perovskite solar cells 

➢ We have developed a complete physical model based on generation and 

migration of ions to understand the photon-induced degradation of perovskite 

solar cells. We have showed that the degradation in short-circuit current can be 

fitted with a double-exponential model. We have also developed a relationship 

between the change in open-circuit voltage and short-circuit current during 

photon-induced degradation.  

➢ We have studied the contribution of hole transport layer on photon-induced 

degradation of perovskite solar cells. We have compared devices fabricated on 

PTAA and NiO as hole-transport layers for this comparative study. Then, we 

have showed that the photon-induced degradation on both hole-transport layers 

can be explained by using our model. 

➢ We have showed that Indium doped Cadmium Sulfide and Aluminum doped 

Zinc Oxide as buffer electron transport layers can help the perovskite solar cells 

fabricated on PTAA to recover completely after photon-induced degradation. 

These two buffer layers can also enhance the dark-stability of these solar cells. 

ZnO:Al enhances the environmental stability of perovskite solar cells in 
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presence of moisture. ZnO:Al can also act as a transparent top contact for 

bifacial solar cell which can used as a large bandgap cell for a tandem solar cell 

with c-Si or CIGS. 

➢ We have reported that the stoichiometry of perovskite (𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar 

ratio) affects the photon-induced degradation of perovskite solar cells. Initially, 

the degradation decreases with increase in 𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar ratio before 

reaching a minimum. Beyond that point the degradation increases with increase 

in 𝑃𝑏𝐼2 to 𝑀𝐴𝐼 molar ratio.  

➢ Biasing condition during exposure affects the photon-induced degradation of 

perovskite solar cells. We have showed that degradation when the device is 

exposed in open-circuit condition is higher compared to degradation in short-

circuit condition. This result can also be explained based on our model. 

➢ Fabrication techniques of perovskite (Solution vs Vapor) can also affect the 

photon-induced degradation. The vapor-processed perovskite solar cell which 

has thinner optimum thickness to achieve maximum power-conversion 

efficiency degrades slower compared to solution-processed perovskite solar 

cells. 

➢  Grain size of perovskite can affect the photo-stability. Smaller grain-size 

perovskite is prone to higher migration and generation of ions which leads to 

higher photon-induced degradation. The grain size of perovskite can be 

increased using solvent annealing method followed the spin-coating of 

perovskite. Larger grain size of perovskite enhances the stability of these solar 

cells. 
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➢ We have also developed a modified equivalent circuit model to understand the 

change in photovoltaic parameters of perovskite solar cells. The degradation in 

short-circuit current density can be modeled using a double-exponential model 

which explains both migration and generation of ions. The change in open-

circuit voltage can be explained by two opposing components: open-circuit 

voltage increases due to migration from ions from perovskite-transport layers’ 

interfaces towards bulk perovskite and decreases with increase in non-radiative 

recombination. These factors can be considered with a dependent current source 

in parallel with the photo-generated current source and a dependent voltage 

source in series with the diode to have complete equivalent circuit for 

perovskite solar cells. 

 

8.2 Future Work 

The detailed study of photon-induced degradation of vapor-processed perovskite solar 

cells is important, as the co-evaporated perovskite solar cells have showed great photo-

stability. This degradation can depend on different deposition conditions, process parameters 

as well as the substrate temperature during co-evaporation.  

We also need to find ways to enhance the grain size of perovskite. Several methods 

such as Vacuum-flashed assisted deposition [3] and solvent annealing [1,2] have been 

proposed for grain enhancement of perovskite. Our study has showed that larger grain-size 

perovskite enhances photo-stability. So, it is important to enhance the perovskite grain size 

even more than micrometers, if possible we need to get single crystal perovskite. 
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Incorporating Cesium (Cs) during fabrication of perovskite can enhance the stability as 

it has smaller atomic radius and so, less prone to decomposition after forming perovskite. 

Gratzel et al. [5] have achieved power-conversion efficiency of perovskite solar cell more than 

20%. They have used 5% Cesium during the fabrication process. This work also showed a 

significant increase in photo-stability with 5% incorporation of Cesium.  

Finally, photo-instability is a very challenging problem for perovskite solar cells. This 

problem can be avoided as solar cells must work under light. The first step to solve the problem 

is to understand the physics behind it. Several factors can affect the photo-instability of 

perovskite solar cells. Thus, there might not be a single solution, but a combining optimization 

of several factors may be needed to solve this problem. The promising fact is that different 

studies have showed this degradation is to be completely recoverable in dark. This 

phenomenon suggests that the inherent material property doesn’t degrade during photon-

induced degradation.  
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Abstract 

Photon-induced degradation is a well-known challenge for perovskite solar cells. In 

this report, we have developed a complete physical model on understanding the degradation 

with the help of a modified equivalent circuit model. We have done photo-degradation on p-i-

n structured device in open-circuit condition at one-sun intensity and showed that the 

experimental result matches well with the simulation result based on our model. We have used 

the theory based on migration and generation of ions during photo-exposure to explain our 

results. We also have studied influence of Perovskite-HTL interface on photon-induced 

degradation of perovskite solar cells. 

 

Introduction 

Perovskite solar cells have already showed great potential as thin films solar cell with 

power conversion efficiency exceeding 20% [5] has already been reported. These solar cells 

can be deposited with both solution [3] or vapor growth [2] techniques. It has showed some 

very exciting electronic properties such as high absorption coefficient, long diffusion lengths, 

low midgap defects, high carrier lifetime etc. which attributes to high power conversion 

efficiencies. But the challenges with perovskite solar cells include instability in presence of 
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moisture and degradation during photo-exposure. But the detailed device physics of this 

photon-induced degradation has not been studied yet. In this report, we propose a modified 

equivalent circuit model to understand the photon-induced degradation for perovskite solar 

cells. 

 

Device Fabrication 

In this experiment, we have used p-i-n structed (light entering from the p-type transport 

layer) solar cell with structure Glass/ITO/HTL/Perovskite/PC60BM/Al where HTL can be 

either PTAA or NiO. We have used ITO Coated glass substrate and evaporated 30nm of NiO 

using Ebeam evaporation followed by annealing at 200°C for 60 minutes in ambient 

environment. For PTAA 2.18 mg/mL PTAA in toluene was spin-coated at 6000 rpm for 40 

seconds followed by annealing at 150°C for 10 minutes. Then, about 1.6 M perovskite solution, 

contains MAI (methylammonium iodide), 𝑃𝑏𝐼2, DMSO (Dimethyl sulfoxide) in DMF 

(Dimethylformamide) with molar ratio of 1:1.05:1, was spin coated at 4000 rpm for 25 seconds 

with drop cast chlorobenzene on 10 seconds’ delay using Park’s recipe [3]. This gives about 

600nm of perovskite layer thickness. Then it was annealed at 60°C for 1 minute followed by 

100°C for 5 minutes. Then 20 mg/mL PC60BM in chlorobenzene solution was spin coated at 

2000 rpm for 40 seconds. Finally, 100 nm of Aluminum was deposited using thermal 

evaporation. The light IV curve of this device has been reported in Fig. 1 before photon-

induced degradation with power conversion efficiency of 15.5% on NiO and 18.4% on PTAA.  
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Fig. 1. Light IV curve of p-i-n perovskite solar cell before photon-induced degradation, 

measured at 1 sun intensity (AM1.5). This device doesn’t show any hysteresis in light IV 

characteristics. 

 

Photon-induced Degradation 

Photon-induced degradation of this device was measured at one-sun intensity (AM1.5) 

with a solar simulator in open-circuit condition for 100 hours. The photovoltaic parameters 

such as open-circuit voltage, short-circuit current, fill factor and power conversion efficiencies 

were measured at every 10 minutes in a nitrogen filled glovebox with both oxygen and 

moisture less than 0.1 ppm. 

The photon-induced degradation result has been reported in Fig. 2. Please note decrease 

in short-circuit current during this degradation for both devices, but open circuit voltage 

increases on NiO and decreases on PTAA. These results have been explained physically by 

Pranav et al. by migration and generation of ions theory [1,6]. We will develop a complete 

model using a modified equivalent circuit in later part of this appendix. 
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Simulation Results and Discussions 

A. Short-circuit current degradation: 

It is very well known that there are mobile ions present in bulk perovskite which can 

redistribute themselves in presence of electric field. At thermal equilibrium, the positive ions 

move towards the HTL and negative ions move towards to ETL due to internal electric field. 

Because of high electric field present at the interfaces these ions do not contribute to 

recombination with photo-generated carriers. But during exposure in open-circuit condition as 

the internal electric field decreases the mobile ions can migrate towards bulk perovskite. And 

in addition to that more ions are generated by high energy photons. The generated electron 

hole pairs recombine with the ions to contribute to current loss. The degradations in short-

circuit current density can be fitted with a double-exponential equation as, 

 
 

Fig. 2. Photon-induced degradation comparison of these two p-i-n devices under one-sun 

intensity (AM1.5) for 100 hours (a) Normalized open-circuit voltage degradation (b) 

Normalized short-circuit current degradation (c) Fill-factor degradation (d) Degradation in 

power conversion efficiency.  
  

𝐽𝑠𝑐(𝑡) = 𝐽𝑠𝑐,𝑡=0 − 𝛥𝐽𝑠𝑐     

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

(1) 

 
(2) 
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With boundary conditions,  

(𝑖) 𝑎𝑚+ 𝑎𝑔=
𝛥𝐽𝑠𝑐

𝐽𝑠𝑐,𝑡=0
 |𝑡→∞        (𝑖𝑖)𝛥𝐽𝑠𝑐= 0 at t=0       

 

It is understandable why we need two exponentials to fit the short-circuit current 

degradation if we consider both migration and generation of ions contribute in this photon-

induced degradation. We can consider the first exponential takes care of the migration of ions 

with a time constant of 𝒕𝒄𝒎 and a magnitude of 𝒂𝒎 . And the second exponential models the 

generation of ions with a time constant of 𝒕𝒄𝒈 and a magnitude of 𝒂𝒈. For NiO the values which 

can describe the short-circuit current degradation are: 𝒕𝒄𝒎=2 hours, 𝒂𝒎=0.084 mA/cm^2, 

𝒕𝒄𝒈=20 hours, 𝒂𝒈= 0.084 mA/cm^2. For PTAA the values are: 𝒕𝒄𝒎=2 hours, 𝒂𝒎=0.15 

mA/cm^2, 𝒕𝒄𝒈=42 hours, 𝒂𝒈= 0.3 mA/cm^2. The dependent current source in the proposed 

equivalent circuit model takes this degradation in short-circuit current density. The magnitude 

of this dependent current source is given by,  

𝐼𝑖(𝑡) = 𝐼𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)]  

B. Change in Open-circuit voltage: 

     There are two components which play a role in evolution of open-circuit voltage. First, 

increase in open-circuit voltage due to migration of ions from interfaces to bulk perovskite. 

Second, decrease in open-circuit voltage due to increase in non-radiative recombination. At 

thermal equilibrium, ions near the contact layers create an electric field opposing the built-in 

electric field. Thus, reduces the net electric filed and reduces the open-circuit voltage. Here, the 

parameter  𝑽𝒅 is defined as the difference in open circuit voltage if there are no ions at thermal 

equilibrium ( 𝑽𝒐𝒄,𝟎) and the actual open circuit voltage measured at time t=0 ( 𝑽𝒐𝒄,𝒕=𝟎 , before 

exposure). The  𝑽𝒅 for NiO is 0.07 V and for PTAA is 0.01 V. At the onset of photo-degradation 

(3) 

 

(4) 
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these ions start moving from the perovskite-contact layer interfaces towards the neutral bulk 

region and so, the open circuit voltage starts to increase towards the value if there were no ions 

present at thermal equilibrium with a time constant 𝒕𝒄𝒎=2 hours which is consistent with the 

time constant obtained from degradation in current. This is first component behind the change 

in open circuit voltage. So, the change in open-circuit voltage due to ion migration is given by,  

𝛥 𝑉𝑜𝑐,𝑖(𝑡) =  𝑉𝑑 (1 − 𝑒
−

𝑡
𝑡𝑐𝑚) ;  𝑉𝑑 =  𝑉𝑜𝑐,0 −  𝑉𝑜𝑐,𝑡=0 

 𝑉𝑜𝑐,0 =
𝑛𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑙

𝐽0
+ 1) 

As ions are generated during exposure, these ions recombine with the generated electron 

hole pairs and there is an increase in non-radiative recombination. Due to increase in 

recombination the lifetime of electrons and holes will decrease. Thus, the open circuit voltage 

will decrease. The expression of open circuit voltage considering non-radiative recombination, 

but no ion migration is given by [4],  

 

𝑉𝑜𝑐,𝑟 =
𝑘𝑇

𝑞
ln (

𝑁𝐵𝐽𝑠𝑐τ

𝑞𝑛𝑖
2𝑊

)      

 
The expression for decrease in open-circuit voltage due to increase in non-radiative 

recombination can be derived as equation (8),  

𝛥𝑉𝑜𝑐,𝑟(𝑡) = 𝑉𝑜𝑐,𝑟,𝑡=0 − 𝑉𝑜𝑐,𝑟,𝑡=𝑡 = 3
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

The total change in open-circuit voltage during photon-induced degradation can be given 

by equation (10),  

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑜𝑐,𝑡=𝑡 − 𝑉𝑜𝑐,𝑡=0 = 𝛥𝑉𝑜𝑐,𝑖(𝑡) − 𝛥𝑉𝑜𝑐,𝑟(𝑡)   

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑑 (1 − 𝑒
−

𝑡
𝑡𝑐𝑚) − 3

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
)  

This change in open-circuit voltage can be incorporated in the equivalent circuit in figure 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 
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3 as a dependent voltage source in series with the diode. The magnitude of which can be given 

by,  

𝑉𝑖(𝑡) =  𝑉𝑑(1 − 𝑒
−

𝑡
𝑡𝑐𝑚) − 3

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

 

 
 

Fig. 3. Proposed modified equivalent circuit model for perovskite solar cells 
 

The total current extracted from the circuit is given by,  

𝐼 = 𝐼𝐿 − 𝐼𝑖 − 𝐼0 [exp (
𝑞(𝑉−𝑉𝑖)

𝑛𝑘𝑇
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
   

 
 

Fig. 4. Comparison of normalized change in open-circuit voltage and short-circuit current 
degradation between experimental and simulated result obtained from our model. 

(11) 

 

(12) 
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Fig. 5. Comparison of Light IV curves simulated using the equivalent circuit model (Fig. 3) 
before and after degradation for 100 hours at one-sun intensity with the experimental Light 

IV curves (a) on NiO (b) on PTAA 
 
       Fig.4 shows the comparison between experimental and simulated results over 100 hours 

of photon-induced degradation for normalized open-circuit voltage and short-circuit current. 

Fig. 5 shows the simulated light IV using the equivalent circuit diagram in Fig. 3 before and 

after degradation along with the experimental results obtained on the p-i-n solar cell. The 

mismatch in light IV after degradation between actual and simulated result comes from the 

degradation in series and shunt resistance which we ignored in our equivalent circuit model.  

Finally, we have developed a comprehensive model based on device physics which 

explains quantitatively the influence of ion-induced recombination and migration of ions from 

the interfaces into the middle of the device. The experimental data on both current and voltage 

degradation perfectly match the model. We have also showed how different interfaces affect 

stability and show that this phenomenon can also be described by using the universal model 

that we have developed. 
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Conclusion 

Both generation and migration of ions contribute to the photon-induced degradation of 

perovskite solar cells. The degradation in short-circuit current density can be modeled using a 

double-exponential model which explains both migration and generation of ions. The change 

in open-circuit voltage can be explained by two opposing components: open-circuit voltage 

increases due to migration from ions from perovskite-transport layers’ interfaces towards bulk 

perovskite and decreases with increase in non-radiative recombination. These factors can be 

considered with a dependent current source in parallel with the photo-generated current source 

and a dependent voltage source in series with the diode to have complete equivalent circuit for 

perovskite solar cells. The perovskite-HTL interface also plays a significant role in photon-

induced degradation of perovskite solar cells. 
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Abstract 

Photon-induced degradation in power conversion efficiency of perovskite solar cells is 

a very well-known phenomenon. In this work, we report that Indium doped CdS and 

Aluminum doped ZnO as electron transport layers improve the dark recovery after photon-

induced degradation as they act as buffer layers to protect the aluminum contacts from mobile 

iodine ions. It also improves the stability in presence of moisture by encapsulation of 

perovskite. We also report the highest efficiency (18.4%) of p-i-n structured perovskite solar 

cells on PTAA using single solution process.  

 

 

Introduction 

Organolead trihalide perovskite (OTP) as a light absorbing material has already showed 

huge potential in photovoltaic applications. More than 20% efficiency has already been 

reported by several groups. Some research groups have already reported high diffusion length 

[1,2,3,4], high carrier lifetime [3], and large absorption coefficient [5] etc. as attributes towards 

high power conversion efficiency. Despite of this tremendous light conversion efficiency they 

show some very interesting electronic characteristics. Some research groups have reported that 

these perovskite-based devices show transient behavior [6] which might be responsible for 
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dependence of light IV measurement on scan direction, scan speed, and light and voltage 

preconditions before light IV measurement [6,7,8]. Light IV hysteresis and voltage evolution 

also showed dependence on device structure and contact layers (Electron and hole transport 

layers). Photon-induced degradation is also challenging problem which needs to be solved 

before making perovskite commercially viable. But the encouraging sign is that some of these 

devices show complete recovery in dark after photon induced degradation which proves that 

this degradation is reversible [11,12]. To make perovskite solar cells reliable for 

commercialization, we need to find the proper device structure with suitable transport layers. 

In this report we will demonstrate that using both CdS and ZnO we can improve the ambient 

stability of perovskite solar cells. 

 

Device Fabrication 

We have used ITO Coated glass substrate and spin coated 2.18 mg/mL PTAA solution 

in toluene at 6000 rpm for 40 secs which gives a thickness of about 20nm. Then annealed at 

150°C for 10 mins. We have pre-wetted the PTAA substrate with DMF before spin-coating 

perovskite which reduces the surface energy and enhances the spread-ability of perovskite 

solution. Then, about 1.6 M perovskite solution, contains 𝐶𝐻3𝑁𝐻3𝐼, 𝑃𝑏𝐼2, DMSO in DMF 

with molar ratio of 1:1.05:1, was spin coated at 4000 rpm for 25 seconds with drop cast 

chlorobenzene on 10 seconds’ delay. This gives about 600nm of perovskite layer thickness. 

Then it was annealed at 60°C for 1 minute followed by 100°C for 5 minutes. Then 20 mg/mL 

𝑃𝐶60𝐵𝑀 in chlorobenzene solution was spin coated at 2000 rpm for 40 seconds. Then the 

whole structure was annealed at 100°C for 15 minutes. Indium doped CdS (about 25nm) was 

deposited using thermal evaporator and Aluminum doped ZnO (about 280nm) was deposited 
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using sputtering. Both CdS and ZnO layers serve as buffer layers which enhances stability of 

these devices.  Finally, about 100 nm of Aluminum was deposited using thermal evaporator. 

FIG. 2 shows the light IV characteristics of those two devices.  

 
 

FIG 1: Device structures with corresponding band edges used in this experiment (a) With 

CdS/ZnO as buffer layers (b) With no buffer layers 

 

    
 

FIG 2: (a) Light IV measurements before photon-induced degradation (b) Absolute external 

quantum efficiency and integrated current density for both devices before photon-induced 

degradation; Red represents Light IV for device with CdS/ZnO as buffer layers, Blue 

represents Light IV for device with no buffer layers 

 

FIG. 1 shows the device structure and corresponding band edges which are being 

compared for this photo-degradation study. One of them (FIG. 1a) has two extra layers Indium 

(a) (b) 

(a) (b) 
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doped Cadmium Sulfide and Aluminum doped Zinc Oxide which work as buffer layers. The 

other device (FIG. 1b) doesn’t have these two extra layers. Both the devices showed above 

have similar efficiencies to start with. The device with CdS/ZnO as buffer layer has a starting 

power conversion efficiency of 18.4% and the control device had power conversion efficiency 

of about 17.8%. To make sure that all the changes are due to photon-induced degradation we 

have a reference contact with similar efficiency which doesn’t show any degradation over time 

in dark. The photovoltaic parameters of these three devices before any degradation has been 

reported in Table 1. None of the devices showed any hysteresis in light IV measurements. FIG. 

2 shows the initial light IV measurement before photon-induced degradation and absolute 

external quantum efficiency measurements of these devices. 

Table 1: Photovoltaic parameters for perovskite solar cells before photon induced 

degradation 

𝑫𝒆𝒗𝒊𝒄𝒆 𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as buffer layers 1.11 21.7 76 18.4 

No buffer layers-Degraded contact 1.11 21.3 75 17.8 

No buffer layers-Reference contact 1.11 21 76 17.7 

 

 

Results 

The photo-degradation comparison for these two devices has been measured at open-

circuit condition for 100 hours at one-sun intensity (AM1.5).  FIG. 3 shows that both degraded 

almost similarly over 100 hours. Table 2 shows that degradation of all the photovoltaic 

parameters are comparable after 100 hours of photon-induced degradation.  
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FIG. 3:  Photo-degradation summary for 100 hours at one-sun intensity (AM1.5) (a) Device 

with CdS/ZnO as buffer layer (b) Device with no buffer layers 

Table 2: Photon-induced degradation (in percentage) of photovoltaic parameters after 

exposing for 100 hours at 1 sun intensity in open-circuit condition 

𝑫𝒆𝒗𝒊𝒄𝒆 𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as buffer layers 4% 45% 24% 58% 

No buffer layers-Reference contact 4% 45% 20% 57% 

*Note: All the parameters decrease with time during photon induced degradation 

 

The interesting factor is that the device which had CdS and ZnO as buffer layers has 

completely recovered after kept in dark for 43 hours [FIG. 4(a)]. But the device which didn’t 

have CdS and ZnO as buffer layers didn’t recover even after 43 hours in dark [FIG. 4(b)]. But 

the reference device in FIG. 5 shows no change during this period which proves that all these 

changes are due to photon-induced degradation only. The photovoltaic parameters of these 

devices before degradation, after degradation and after recovery in dark have been reported in 

Table 3. 

 

(a) (b) 
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FIG. 4: Light IV recovery in dark after photon-induced degradation for 100 hours at one-sun 

intensity (AM1.5) (a) Device with CdS/ZnO as buffer layers (b) Device with no buffer layers 

 
 

Table 3: Photovoltaic parameters comparison for perovskite solar cells before and after 

degradation along with after recovery 

𝑫𝒆𝒗𝒊𝒄𝒆  
𝑺𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 

 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

With CdS/ZnO as 

buffer layers 

Before Degradation 1.11 21.7 76 18.3 

After Degradation 1.06 12.1 59 7.6 

After Recovery 1.10 21.7 75 17.9 

No buffer layers-

Degraded contact 

Before Degradation 1.11 21.3 75 17.8 

After Degradation 1.07 11.7 61 7.6 

After Recovery 1.07 14 69 10.3 

No buffer layers-

Reference contact 

Before Degradation 1.11 21 76 17.7 

After Degradation 1.11 20.8 76 17.6 

After Recovery 1.11 20.5 77 17.5 

(a) (b) 
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FIG. 5: Light IV characteristics of the reference device which shows no change during this 

period 

 

 

FIG. 6: Band diagrams to explain recovery in dark after photo-degradation (a),(b),(c) 

migration and generation of ions during photo-degradation followed by recovery in dark 

where CdS/ZnO as blocking layer which helps the device to recover completely even after 

photo-degradation for 100 hours  at one-sun intensity (d),(e),(f) migration and generation of 

ions during photo-degradation followed by recovery in dark where there is no CdS/ZnO 

buffer layer. During recovery, the Aluminum contact is contaminated by iodine ions as they 

migrate through PCBM layer. Thus, the device doesn’t recover after photo-degradation for 

100 hours at one-sun intensity 
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These photo-degradation and recovery results can be explained by the simplified band-

diagrams showed in FIG. 6 and using the explanation by Lee et al. that iodine ions can 

contaminate the metal contacts leading to a permanent degradation for these devices (Ref 9). 

This figure explains the recovery in dark after photo-degradation for devices with and without 

CdS/ZnO as blocking layers. At thermal equilibrium, due to built-in E-filed positive ions go 

towards hole transport layer (HTL) and negative ions go towards electron transport layer (ETL) 

[FIG. 6 (a) and (d)]. So, we have net electric field inside the active layer. Due to high electric 

field at the interfaces these ions do not recombine with generated electron-hole pairs. During 

exposure in open-circuit condition, due to decrease in internal E-field these ions migrate 

towards the intrinsic active layer. And in addition to that more ions are generated by high 

energy photons [FIG. 6 (d) and (e)]. The generated electron hole pairs recombine with the ions 

to contribute to current loss. 

Just after exposure [FIG. 6 (c) and (f)] there are more mobile ions present inside bulk 

perovskite. During recovery, there is sudden increase in electric field from the ETL to HTL 

inside bulk perovskite. And as the activation energy of migration for iodine ions is lowest (ref 

10) and so they are very easy to migrate. During recovery, suddenly the negative ions’ 

concentration at Perovskite-PCBM interface increases. These ions have high enough energy to 

punch through PCBM and react with Aluminum [FIG. 6 (f)]. As these iodine ions contaminate 

Aluminum contact permanently, the series resistance and short circuit current don’t recover. 

But in case of the device with CdS and ZnO, these iodine ions are blocked by these buffer 

layers [FIG. 6 (c)]. Consequently, this device completely recovers as the Aluminum contact 

doesn’t get contaminated by iodine ions. 

 



www.manaraa.com

201 

 

FIG. 7: Light IV response of perovskite solar cell with CdS/ZnO as buffer layers (i) Just after 

fabrication (ii) After device was kept in 30-50% humidity for 30 days. 

 

CdS and ZnO as buffer layers also help to improve the stability of these devices in 

presence of moisture. FIG. 7 shows the light IV comparison of perovskite solar cell with 

CdS/ZnO as buffer layers before exposure in moisture (pristine device), and measured after it 

was kept at 30-50% humidity outside glovebox for 30 days. Perovskite solar cells with no 

CdS/ZnO as buffer layer degrades immediately after exposure to moisture but adding CdS/ZnO 

as buffer layer improves the device stability in ambient environment for more than 30 days. 

Table 4 shows the photovoltaic parameters of this device before and after exposure in moisture. 

Table 4: Photovoltaic parameters for a device with CdS/ZnO as buffer layers before and after 

exposure in moisture 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

Before Exposure in Moisture 1.09 21.6 74 17.4% 

After 30 days @30-50% Humidity 1.09 21.5 71 16.7% 
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Abstract 

In this work, we investigate the effect of stoichiometry 

(𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜) on photon induced degradation of p-i-n structured solution-

processed perovskite (𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3) solar cells. We did comparative study with different 

molar ratio of 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼  (1, 1.025, 1.05, 1.075 & 1.10) on photon induced degradation 

for 100 hours under 1 sun intensity in open-circuit condition. We report the highest efficiency 

(18.5%) of p-i-n structured perovskite solar cells on PTAA using single solution process. We 

also showed that degradation in short-circuit current density can be fitted with two additive 

exponential terms which can be explained by both migration and generation of ions within 

bulk perovskite during photon-induced degradation.   

 

Introduction 

Organolead trihalide perovskite (OTP) as a light absorbing material has already showed 

huge potential in photovoltaic applications. There has already been a rapid increase in power 

conversion efficiency with maximum being 22.1% [1]. Already several groups have confirmed 

an efficiency > 20% [1,2]. Very high diffusion lengths of photo-generated carries have been 

reported by several research groups which enables these devices to have very good collection 

efficiencies [3,4,5,6]. People have also reported that perovskite as absorber layer shows high 
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carrier lifetime [5], and large absorption coefficient [7] etc. as attributes towards high power 

conversion efficiency. Despite of this tremendous light conversion efficiency they show some 

very interesting electronic characteristics [8,9,10,11,12]. Some research groups have reported 

that these perovskite-based devices have mobile ions present in the active layer and these ions 

show transient behavior with applied electric field [6] which might be responsible for 

dependence of light IV measurement on scan direction, scan speed, and light and voltage pre-

biasing conditions before light IV measurement [13,14,15,16]. Light IV hysteresis and voltage 

evolution also showed dependence on device structure and contact layers (Electron and hole 

transport layers). In this report, we will investigate the effect of stoichiometry 

(𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑝𝑒𝑟𝑜𝑣𝑠𝑘𝑖𝑡𝑒 𝑝𝑟𝑒𝑐𝑢𝑠𝑜𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) which affects the ion 

density inside bulk perovskite on photon-induced degradation. 

 

Device Fabrication 

We have used ITO Coated glass substrate and spin coated 2.18 mg/mL PTAA solution 

in toluene at 6000rpm for 40 seconds which gives a thickness of about 20nm. Then annealed 

at 150°C for 10 minutes. The perovskite precursor solution has high contact angle with the 

PTAA substrate. As a result, the precursor perovskite solution spreads very poorly on PTAA 

and leads to a lot of pin-holes in the perovskite film. Here we have prewetted the PTAA 

substrate with DMF which helps to reduce the surface energy and enhances spread-ability of 

perovskite precursor solution on PTAA substrate by increasing the contact angle at the 

interface [17]. So, we have pre-wetted the PTAA substrate with DMF before spin-coating 

perovskite which improves the film quality with almost no pin-holes. For our control device 

about 1.6 M perovskite solution, contains 𝐶𝐻3𝑁𝐻3𝐼, 𝑃𝑏𝐼2, DMSO in DMF with molar ratio of 
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1:1.05:1, was spin coated at 4000rpm for 25 seconds with drop cast of chlorobenzene on 10 

seconds’ delay as showed in 𝐹𝐼𝐺. 1 [18]. This gives about 600nm of perovskite layer thickness. 

Then it was annealed at 60°C for 1 minute followed by 100°C for 5 minutes. Then 20mg/mL 

PC60BM in chlorobenzene solution was spin coated at 2000 rpm for 40 seconds. Then the 

whole structure was annealed at 100°C for 15 minutes. Finally, about 100 nm of Aluminum 

was deposited using thermal evaporator. The highest power conversion efficiency of the 

control device recorded was 18.5% with average being 16.8±0.76%. For this study, solar cells 

were fabricated with different molar ratio between 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 in the precursor 

perovskite solution for photon-induced degradation study. The device structure and power 

conversion efficiencies of perovskite solar cells with different molar ratio (1, 1.025, 1.05, 1.075 

& 1.10) have been reported in FIG. 2 and Table 1. 

 
 

FIG. 1: Schematic of spin-coating of perovskite on PTAA substrate 

 

Table 2: Photovoltaic parameters for perovskite solar cells fabricated with different 

stoichiometry 

[𝑷𝒃𝑰𝟐]/[𝑴𝑨𝑰] 𝑽𝒐𝒄(𝑽) 𝑱𝒔𝒄(𝒎𝑨/𝒄𝒎𝟐) 𝑭𝑭(%) 𝑷𝑪𝑬 (%) 

1* 1.07 21.6 68 15.7 

1.025** 1.11 21.8 74 18.0 

1.05 1.11 21.3 75 17.7 

1.075 1.12 20.1 74 16.7 

1.10** 1.11 22 75 18.4 
Note: Measured *4 minutes & **2 minutes after exposing under 1X(AM1.5) intensity 
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FIG. 2: (a) Device structure and band edges of perovskite solar cell, light IV along with 

power conversion efficiencies for devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar 

ratio (b) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1 (c) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025 (d) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.05 (e) 
[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.075 and (f) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.10. The solid line represents light IV scanned 

from low to high bias and dotted line represents light IV scanned from high to low bias. None 

of the light IV measurements show any hysteresis. 

 

 

Results 

We studied the photon-induced degradation of these devices for 100 hours under 1 sun 

intensity (AM1.5) in open-circuit condition. The photon-induced degradation and comparison 

among degradation in short-circuit current density over 100 hours have been reported in FIG. 

3. The key take-away from this photon-induced degradation study is that the degradation 

decreases relative increase in 𝑃𝑏𝐼2 before it reaches a minimum and then again increases with 

relative increase in 𝑃𝑏𝐼2 . The normalized degradation in short-circuit current density after 100 

hours as a function of  𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 malor ratio has been reported in FIG. 4. The 
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degradation index has been calculated as, 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐽𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (𝑡 = 100 𝐻𝑜𝑢𝑟𝑠) = 1 −
𝐽𝑠𝑐,𝑡=100 ℎ𝑜𝑢𝑟𝑠

𝐽𝑠𝑐,𝑡=0
 

This photon-induced degradation has been repeated several times with different 

stoichiometry and the cumulative standard error of experiment for this degradation index was 

calculated as 0.016. This standard error has been used as error bar in FIG. 4. This result can be 

explained considering both migration and generation of ions during photon induced 

degradation [18,19]. The stoichiometry of perovskite precursor solution can affect the initial 

density of ions at perovskite-transport layer interfaces (FIG. 5). When we have used 1:1 molar 

ratio between 𝑃𝑏𝐼2 𝑎𝑛𝑑 𝐶𝐻3𝑁𝐻3𝐼 there some positive 𝑀𝐴+ and negative 𝐼− ions present 

inside bulk perovskite as according to Walsh et al. this kind of decomposition has lowest 

formation energy. Thus, the formation of perovskite along with formation of initial ions can 

be explained by the following chemical reaction: 

𝑎 ∗ 𝑀𝐴𝐼 +  𝑎 ∗ 𝑃𝑏𝐼2  𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 

𝑎, 𝑦   and 𝑧   are all constants. 

In presence of internal electric-field the positive 𝑀𝐴+ions migrate towards the 

perovskite-HTL interface and negative 𝐼− ions migrate towards perovskite-ETL interface 

(FIG. 5). Because of very high electric field at the interface these ions do not recombine with 

photo-generated electron-hole pairs. Thus, the initial short-circuit current density before 

exposure is not affected by this interface trapped ions. But, during the photon-induced 

degradation in open-circuit condition these ions can migrate towards the neutral perovskite 

region. There are more ions generated by high energy photons. These ions in bulk perovskite 

act as recombination centers for photo-generated electron-hole pairs. Thus, the reduction in 

collection efficiency leads to the degradation in short-circuit current density.  
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Now, if we increase the relative concentration of 𝑃𝑏𝐼2 in the perovskite precursor solution, 

these excess of 𝑃𝑏𝐼2 can shift the chemical reaction to reduce initial ion densities by forming 

more perovskite atoms. This phenomenon can be explained by the following chemical reaction: 

𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 + 𝑥1 ∗ 𝑃𝑏𝐼2  𝑦′*(𝑀𝐴+ + 𝐼−)   + 𝑧′ * 𝑀𝐴𝑃𝑏𝐼3 

Here, 𝑦  , 𝑧  , 𝑥1, 𝑦′ and 𝑧′ are all constants. Also, 𝑦′ <  𝑦   and 𝑧   <  𝑧′. 𝑥1 represents 

the excess of 𝑃𝑏𝐼2 .  

Lower initial ion densities at the interfaces leads to lower degradation in short-circuit 

current density. As we have seen when the 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio changes from 1 to 

1.025 the normalized degradation in short-circuit current density decreases. If we keep 

increasing the relative concentration of 𝑃𝑏𝐼2 at some point we can eliminate the initial densities 

of ions trapped at the interfaces and the degradation in short-circuit current density reaches 

minimum (FIG. 5). That chemical reaction can be illustrated from the following equation: 

𝑦  *(𝑀𝐴+ + 𝐼−) + 𝑧  *𝑀𝐴𝑃𝑏𝐼3 + 𝑥 ∗ 𝑃𝑏𝐼2  𝑧′′ * 𝑀𝐴𝑃𝑏𝐼3 

Here, 𝑦  , 𝑧  , 𝑥 and 𝑧′′ are all constants. Also, 𝑧   <  𝑧′′. 𝑥  represents the excess of 

𝑃𝑏𝐼2 .  

If we keep increasing the relative concentration of 𝑃𝑏𝐼2 then we are adding excess of 

𝑃𝑏𝐼2 which can easily decompose and introduce negative 𝐼− ions (FIG. 5). Thus, the 

degradation in short-circuit current density will again increase as illustrated in FIG. 4. 

In FIG. 6 we can show that the normalized degradations in short-circuit current density for 

different stoichiometry can be fitted with a double-exponential equation as, 

𝐽𝑠𝑐(𝑡) = 𝐽𝑠𝑐,𝑡=0 − 𝛥𝐽𝑠𝑐 

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

 

(1) 

(2) 
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With boundary conditions,  

(𝑖) 𝑎𝑚+ 𝑎𝑔=
𝛥𝐽𝑠𝑐

𝐽𝑠𝑐,𝑡=0
 |𝑡→∞        (𝑖𝑖)𝛥𝐽𝑠𝑐= 0 at t=0 

 
FIG. 3: Photon-induced degradation for 100 hours at 1 sun intensity (AM1.5) in open circuit 

condition for devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio. Here all the 

values are normalized with respect to the values at time, t=0. (a) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1 (b) 

[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025 (c) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.05 (d) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.075 and (e) 
[𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.10 (f) Comparison in short-circuit current degradation among devices with 

different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 

 

Table 2 shows the value of coefficients that has been used to fit the normalized 

degradation in short-circuit current density. It is understandable why we need two exponentials 

to fit the short-circuit current degradation if we consider both migration and generation of ions 

contribute in this photon-induced degradation. We can consider the first exponential takes care 

of the migration of ions with a time constant of 𝒕𝒄𝒎 and a magnitude of 𝒂𝒎 . And the second 

exponential models the generation of ions with a time constant of 𝒕𝒄𝒈 and a magnitude of 𝒂𝒈. 

As 𝒂𝒎 is a function of initial ion densities it should have high correlation with degradation in 



www.manaraa.com

210 

short-circuit current density of devices fabricated with different 𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 molar ratio.  

FIG. 6(c) shows the correlation between 𝒂𝒎 and Normalized short-circuit current degradation 

after 100 hours. As the figure shows, they can be fitted with a straight line with 𝑅2 = 0.91. 

This indicates that they have a very high correlation.  

 
FIG. 4: Normalized short-circuit current degradation at t=100 hours as function of 

𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 𝑚𝑎𝑙𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 

 

 
FIG. 5: Schematic illustration of change in interface charge densities with relative increase 

in 𝑃𝑏𝐼2 with respect to 𝐶𝐻3𝑁𝐻3𝐼 

 

Table 2: Parameters for fitting 𝐽𝑠𝑐 degradation with double-exponential model 

[𝑷𝒃𝑰𝟐]/[𝑴𝑨𝑰] 𝒂𝒎 𝒕𝒄𝒎(𝒎𝒊𝒏𝒖𝒕𝒆𝒔) 𝒂𝒈 𝒕𝒄𝒈(𝒎𝒊𝒏𝒖𝒕𝒆𝒔) 𝑹𝟐 

1 0.53 120 0.10 2500 0.90 

1.025 0.34 120 0.27 2500 0.97 

1.05 0.15 120 0.30 2500 0.99 

1.075 0.25 120 0.30 2500 0.99 

1.10 0.35 120 0.25 2500 0.99 
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FIG. 6: Fitting 𝐽𝑠𝑐 degradation with double-exponential model (a) [𝑃𝑏𝐼2]/
[𝑀𝐴𝐼]=1,1.05,1.10 (b) [𝑃𝑏𝐼2]/[𝑀𝐴𝐼]=1.025,1.075. The solid lines represent fitted line with 

double exponential and dotted lines represent experimental normalized 𝐽𝑠𝑐 degradation. (c) 

The correlation plot between Ion migration coefficient (𝑎𝑚) and Normalized 𝐽𝑠𝑐 degradation 

after 100 hours 

In summary, the stoichiometry of perovskite precursor solution can affect the photon-

induced degradation as the ion densities at the interfaces is a dependent on  𝑃𝑏𝐼2 𝑡𝑜 𝐶𝐻3𝑁𝐻3𝐼 

molar ratio. We need to find the optimum value of this molar ratio which will minimize the 

degradation in short circuit current density. 
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TRANSPORT LAYERS IN PHOTON INDUCED DEGRADATION OF 
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Istiaque Hossain, Ranjith Kottokkaran, Liang Zhang, Laila-Parvin Poly, Max Noack and 

Vikram L. Dalal 

Iowa State University, Ames, Iowa, 50010, USA 

 

Abstract 

In this work, we investigate on how different hole transport layers contribute to photon 

induced degradation of p-i-n structured perovskite (𝐶𝐻3𝑁𝐻3𝑃𝑏𝐼3) solar cells. NiO and PTAA 

as hole transport layers have been used for comparative study. We will also establish a 

mathematical relationship between Short circuit current degradation and open circuit voltage 

evolution. Finally, we will report that the experimental result matches well with the simulated 

result obtained from our model. 

 

Introduction 

The rapid increase in power conversion efficiency using organolead trihalide perovskite 

(OTP) as a light absorbing material has already showed huge potential in photovoltaic 

applications. Already several groups have confirmed an efficiency > 20% [3]. Some research 

groups have already reported high diffusion length [16,17,18,19] high carrier lifetime [18], and 

large absorption coefficient 15 etc. as attributes towards high power conversion efficiency. 

Despite of this tremendous light conversion efficiency they show some very interesting 

electronic characteristics 5,9,11,13,14. Some research groups have reported that these perovskite-

based devices show transient behavior 6 which might be responsible for dependence of light IV 

measurement on scan direction, scan speed, and light and voltage preconditions before light IV 
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measurement [6,7,8,10]. Light IV hysteresis and voltage evolution also showed dependence on 

device structure and contact layers (Electron and hole transport layers). To make perovskite 

solar cells reliable for commercialization, we need to find the appropriate device structure with 

suitable transport layers. In this report, we will investigate the effect of different transport layers 

(PTAA and NiO) on photon-induced degradation. 

 

Device Fabrication 

We have used ITO Coated glass substrate and spin coated 2.18 mg/mL PTAA solution 

in toluene at 6000rpm/40 secs which gives a thickness of about 20nm. Then annealed at 150°C 

for10 mins. We have washed the PTAA substrate with DMF before spin-coating perovskite 

which reduces the surface energy and enhances the spread-ability of perovskite solution. In case 

of NiO (Thickness of about 30 nm), we have deposited using E-beam evaporator and then 

annealed at 200°C for 1 hour in ambient environment. About 1.6 M perovskite solution, contains 

𝐶𝐻3𝑁𝐻3𝐼, 𝑃𝑏𝐼2, DMSO in DMF with molar ratio of 1:1.05:1, was spin coated at 4000rpm for 

25 seconds with drop cast of chlorobenzene on 10 seconds’ delay [20]. This gives about 600nm 

of perovskite layer thickness. Then it was annealed at 60°C for 1 minute followed by 100°C for 

5 minutes. Then 20mg/mL PC60BM in chlorobenzene solution was spin coated at 2000 rpm for 

40 seconds. Then the whole structure was annealed at 100°C for 15 minutes. Indium doped CdS 

(about 25nm) was deposited using thermal evaporator and Aluminum doped ZnO (about 280nm) 

was deposited using sputtering. Both CdS and ZnO layers serve as buffer layers which enhances 

stability of these devices.  Finally, about 100 nm of Aluminum was deposited using thermal 

evaporator.  
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FIG. 1: (a) Device structure and corresponding band edges (b)Transmission of PTAA and 

NiO 

 

   
 

 

FIG. 2: (a) Light IV characteristics of devices fabricated on NiO and PTAA. Both didn’t 

show any hysteresis (b) External quantum efficiency and integrated short-circuit current 

density (c) SEM images shows the topography of perovskite films deposited on PTAA and 

NiO 

 

 

(a) 

(b) 

(a) (b) (c) 
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Figure 2(a) shows the light IV characteristics of those two devices. The photo conversion 

efficiency of the device fabricated on PTAA as hole transport layer is about 18.4% and on NiO 

as hole transport layer is about 15.5% before photon induced degradation. None of the devices 

showed any hysteresis in light IV measurement. Figure 2(b) shows the external quantum 

efficiency and integrated current density of these two p-i-n devices. PTAA has higher 

transmission [Figure 1(b)]. Thus, device fabricated on PTAA shows higher short-circuit current 

density than NiO. The SEM images in figure 2(c) which shows the topography of perovskite 

films fabricated on NiO and PTAA, suggests that there is no significant difference in grain size 

which can also play a role in photon induced degradation. Both have perovskite grain sizes in 

the range of about 200-400 nm. 

  
FIG. 3: Photon-induced degradation comparison of these two p-i-n devices under one-sun 

intensity (AM1.5) for 100 hours (a) Normalized open-circuit voltage degradation (b) 

Normalized short-circuit current degradation (c) Fill-factor degradation (d) Degradation in 

power conversion efficiency 
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Results 

Then we measured photon-induced degradation on these two types of p-i-n devices in 

open circuit condition up to 100 hours under one-sun illumination with AM1.5 spectra for 

comparative study [figure 3].  The key features from this photon-induced degradation are: The 

open-circuit voltage for the solar cell on PTAA decreases over time under continuous 

illumination, while the open-circuit voltage increases for the cell fabricated on NiO, the short-

circuit current and fill factor degrades more for the cell fabricated on PTAA compared to the 

cell fabricated on NiO. Thus, the power conversion efficiency degradation for the cell with 

PTAA as hole transport layer is much higher than power conversion efficiency degradation with 

NiO. 

But, encouraging sign is that both devices, either on PTAA or NiO as hole transport layer 

has recovered in dark. The solar cell fabricated on PTAA has completely recovered in 43 hours 

at room temperature after light exposure for 100 hours at one sun intensity. And the device 

fabricated on NiO completely recovered after it was kept in dark for 13 hours at room 

temperature. The light IV characteristics of these devices before exposure, after exposure and 

after recovery has been showed in figure 4. 

The photo-degradation can be explained by using the ion generation and migration 

theory during photo-exposure [1,12]. At thermal equilibrium, due to built-in E-filed positive 

ions go towards hole transport layer (HTL) and negative ions go towards electron transport layer 

(ETL). So, we have net electric field inside the active layer. Due to high electric field at the 

interfaces these ions do not recombine with generated electron-hole pairs. During exposure, due 

to decrease in internal E-field these ions migrate towards the intrinsic active layer. And in 

addition to that more ions are generated by photons. The generated electron hole pairs recombine 
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with the ions to contribute to current loss. Higher degradation in short circuit current on PTAA 

indicates that the generation of ions during photo-exposure is higher for the device with PTAA 

as hole transport layer compared to the device fabricated on NiO (figure 3). 

 

 
 

FIG. 4: Light IV degradation and recovery in dark (a) fabricated on PTAA as HTL (b) 

Fabricated on NiO as HTL 

 

The degradations in short-circuit current density can be fitted with a double-exponential 

equation as,  

𝐽𝑠𝑐(𝑡) = 𝐽𝑠𝑐,𝑡=0 − 𝛥𝐽𝑠𝑐 

𝛥𝐽𝑠𝑐= 𝐽𝑠𝑐,𝑡=0 [𝑎𝑚 (1 − 𝑒
−

𝑡

𝑡𝑐𝑚) +  𝑎𝑔 (1 − 𝑒
−

𝑡

𝑡𝑐𝑔)] 

With boundary conditions, 

(𝑖) 𝑎𝑚+ 𝑎𝑔= 
𝛥𝐽𝑠𝑐

𝐽𝑠𝑐,𝑡=0
 |𝑡→∞        (𝑖𝑖)𝛥𝐽𝑠𝑐= 0 at t=0 

It is understandable why we need two exponentials to fit the short-circuit current 

degradation if we consider both migration and generation of ions contribute in this photon-

induced degradation. We can consider the first exponential takes care of the migration of ions 

with a time constant of 𝑡𝑐𝑚 and a magnitude of 𝑎𝑚. And the second exponential models the 

(a)

du

sh

hh

hh 

(b) 

(1) 

 

(2) 
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generation of ions with a time constant of 𝑡𝑐𝑔 and a magnitude of 𝑎𝑔. For NiO the values which 

can describe the short-circuit current degradation are: 𝑡𝑐𝑚= 2 hours, 𝑎𝑚= 0.084 𝑚𝐴𝑐𝑚−2,  

𝑡𝑐𝑔=20 hours,  𝑎𝑔=0.084 𝑚𝐴𝑐𝑚−2. For PTAA the values which can describe the short-circuit 

current degradation are: 𝑡𝑐𝑚= 2 hours, 𝑎𝑚= 0.15 𝑚𝐴𝑐𝑚−2,  𝑡𝑐𝑔= 42 hours,  𝑎𝑔=0.3 𝑚𝐴𝑐𝑚−2. 

The change in open circuit voltage can be explained by considering two components 

which play a role during light exposure. First, increase in open circuit voltage due to migration 

of ions from contact layers to the bulk which helps the open circuit voltage to increase during 

exposure because of increase in net built-in potential. Second, decrease in open circuit voltage 

due to increase in non-radiative recombination because of generation of ions during photo-

exposure. 

Just after the fabrication due to internal electric field the positive ions start moving towards the 

hole transport layer (HTL) and negative ions move towards Electron transport layer (ETL). At 

thermal equilibrium, these ions near the contact layers create an electric field opposing the built-

in electric field. Thus, reduces the net electric filed and reduces the open-circuit voltage. Here, 

the parameter  𝑽𝒅 is defined as the difference in open circuit voltage if there are no ions at 

thermal equilibrium ( 𝑽𝒐𝒄,𝟎) and the actual open circuit voltage measured at time t=0 

( 𝑽𝒐𝒄,𝒕=𝟎 , before exposure). At the onset of photo-degradation these ions start moving from the 

contact layers towards the neutral bulk region and so, the open circuit voltage starts to increase 

towards the value if there were no ions present at thermal equilibrium with a time constant τ𝑐. 

This is first component behind the change in open circuit voltage. So, the change in open-circuit 

voltage due to ion migration is given by [2],  

𝛥 𝑉𝑜𝑐,𝑖(𝑡) =  𝑉𝑑 (1 − 𝑒
−

𝑡
τ𝑐) ;  𝑉𝑑 =  𝑉𝑜𝑐,0 −  𝑉𝑜𝑐,𝑡=0 

 

(3) 

 



www.manaraa.com

220 

 𝑉𝑜𝑐,0 =
𝑛𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑙

𝐽0
+ 1) 

As ions are generated during exposure, these ions recombine with the generated electron 

hole pairs and there is an increase in non-radiative recombination. Due to increase in 

recombination the lifetime of electrons and holes will decrease. Thus, the open circuit voltage 

will decrease. The expression of open circuit voltage considering non-radiative recombination, 

but no ion migration is given by [4],  

𝑉𝑜𝑐,𝑟 =
𝑘𝑇

𝑞
ln (

𝑁𝐵𝐽𝑠𝑐τ

𝑞𝑛𝑖
2𝑊

)  

Now, if we assume that lifetime of carriers and short circuit current at t=0 and t=t are 

τ𝑡=0 , 𝐽𝑠𝑐,𝑡=0 and τ𝑡=𝑡 , 𝐽𝑠𝑐,𝑡=𝑡 respectively. Change in open-circuit voltage due to increase in 

non-radiative recombination is given by,  

𝛥𝑉𝑜𝑐,𝑟(𝑡) = 𝑉𝑜𝑐,𝑟,𝑡=0 − 𝑉𝑜𝑐,𝑟,𝑡=𝑡 =
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0τ𝑡=0

𝐽𝑠𝑐,𝑡=𝑡τ𝑡=𝑡
) 

Assuming diffusion lengths of electron and hole are equal,  

𝐽𝑠𝑐 = 2𝑞𝐺𝐿 = 2𝑞𝐺√𝐷τ 

The expression of ration between current densities between time t=0 to t=t becomes,  

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
= √

τ𝑡=0

τ𝑡=𝑡
  

τ𝑡=0

τ𝑡=𝑡
 = (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
)

2

 

Substituting the expression of ratio between lifetimes in the equation of change in open circuit 

voltage,  

𝛥𝑉𝑜𝑐,𝑟(𝑡) = 𝑉𝑜𝑐,𝑟,𝑡=0 − 𝑉𝑜𝑐,𝑟,𝑡=𝑡 = 3
𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

Total Change in 𝑉𝑜𝑐 at time t=t,  

𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑜𝑐,𝑡=𝑡 − 𝑉𝑜𝑐,𝑡=0 = 𝛥𝑉𝑜𝑐,𝑖(𝑡) − 𝛥𝑉𝑜𝑐,𝑟(𝑡)  

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 

(11) 
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𝛥𝑉𝑜𝑐(𝑡) = 𝑉𝑑 (1 − 𝑒
−

𝑡
τ𝑐) − 3

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐,𝑡=0

𝐽𝑠𝑐,𝑡=𝑡
) 

Figure 5 shows the comparison between experimental and simulation result for both 

devices. The simulated normalized change in open-circuit voltage and short-circuit current 

matches well with the experimental change in open-circuit voltage and short-circuit current.  

 

 

FIG. 5: Comparison of normalized change in open-circuit voltage and short-circuit current 

degradation between experimental and simulated result obtained from our model. 

 

In summary, contact layers can play a significant role in photon-induced degradation of 

perovskite solar cells. The simulation results prove our explanation that both migration and 

generation of ions contribute to the photon-induced degradation of perovskite solar cells.  
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APPENDIX E.    DETERMINING THE OPTIMUM ELECTRIC FIELD 

REQUIRED FOR ION MIGRATION IN PEROVSKITE SOLAR CELL 

A paper to be submitted 

Istiaque Hossain and Vikram L. Dalal 

Iowa State University, Ames, Iowa, 50010, USA 

 

Abstract 

Organolead trihalide perovskite (OTP) based solar cells are low cost and has given very 

high efficiency [12,3,45,8,15,20,21] in shorter length of research time but they show some 

interesting electronic behaviors such as voltage and efficiency evolution during light soaking 

[11,12] as well as hysteresis in current-voltage (IV) measurement [7,8,9,10,14]. Although the 

actual physics behind these interesting behaviors is still unknown, now-a-days ion migration 

[6,7,11,12,13] is the most accepted theory. Here we have documented a method to determine 

the optimum electric field (around 1𝑉 µ𝑚−1) that is required to initiate the ion migration in an 

n-i-p structure. Then we have discussed how this parameter plays a role in IV measurements. 

 

Introduction 

The rapid increase in power conversion efficiency using organolead trihalide 

perovskite (OTP) as a light absorbing material has already showed huge potential in 

photovoltaic applications. Already several groups have confirmed an efficiency > 20% [3]. 

Some research groups have already reported high diffusion length [16,17,18,19], high carrier 

lifetime [18], and large absorption coefficient [15] etc. as attributes towards high power 

conversion efficiency. Despite of this tremendous light conversion efficiency they show some 

very interesting electronic characteristics. Some research groups have reported that these 
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perovskite based devices show transient behavior [6] which might be responsible for 

dependence of light IV measurement on scan direction, scan speed, and light and voltage 

preconditions before light IV measurement [6,7,10]. Xiao et al. has showed that the direction 

of photocurrent can be reversed using an electric field around 1𝑉 µ𝑚−1 [11]. These devices 

also show a modification of built-in potential depending on different preset conditions [7]. 

Some research groups have reported significant improvement in open circuit voltage and photo 

conversion efficiency during light soaking over time [11,12]. Many groups have also reported 

hysteresis in light IV measurement [7,8,910,14]. Several theories such as field dependent 

orientation of methyl amine ions (𝑀𝐴+) [22,23,24], ferroelectricity [9,24,25], lattice distortion 

which can affect the charge dynamics [22,23,24], conductivity of contact layers [26] and ion 

migration [6,7, 11,12,13] has been developed over the recent years to explain these behaviors. 

In recent times the ion migration theory has gained most popularity as it can explain most of 

these effects. In this letter we have discussed the mechanism of ion migration and determined 

the optimum electric field required to initiate the ion migration. We have also explained the 

reason behind significant evolution of open circuit voltage and efficiency during light soaking 

in open circuit condition [11,12] and related this optimum electric field with light IV 

measurements.   

 

Results and Discussions 

The device structure and the light IV characteristic that we have used during this 

experiment is shown in figure 1. This was a n-i-p structure device with compact 𝑇𝑖𝑂𝑥 as an 

electron transport layer (ETL) and 𝑃3𝐻𝑇 as a hole transport layer (HTL). The efficiency of the 

device was 9% after 20 mins of light soaking in open circuit condition and the hysteresis is 
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also showed in figure 1. We have used three different thicknesses of the perovskite layer of 

around 400, 500 and 600 nm. 

 

Figure 1: (a) Schematic diagram of the n-i-p perovskite device which is used for our 

measurements (b) The light IV characteristics (400 nm perovskite thickness) of that device 

after 20 minutes of light soaking in open circuit condition. The black line was scanned from 

high-bias to low-bias and the blue line was scanned from low-bias to high-bias. 

 

In figure 2 the process of ion migration has been described. First in short circuit 

condition due to the built-in potential the positive ions move towards the hole transport layer 

(HTL) and forms a space charge region near the perovskite-HTL interface and that makes 

perovskite n-type doped near the HTL interface. Similarly, the negative ions move towards the 

electron transport layer (ETL) and forms a space charge region near the perovskite-ETL 

interface and that makes the perovskite p-type doped ETL interface. Then these two space 

charge regions create an electric field opposing the built-in electric field. 

So now we have an effective built-in potential which is lower than original built-in 

electric field and given by,  

𝑉𝑏𝑖
′ = 𝑉𝑏𝑖 − 𝑉𝑖𝑜𝑛  

(1) 
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This process continues until the effective built-in field is large enough to move these 

ions and form space charge. So finally, it reaches a steady-state condition and there is a net 

electric field due to the effective built-in potential. Now if we apply forward bias these ions 

migrate in the opposite direction and finally reaches a steady state condition again. In this case 

to have significant ion migration we must apply forward bias more than a threshold voltage. 

We call this threshold voltage as onset of ion migration voltage (𝑉𝑜𝑛𝑠𝑒𝑡). 

 

Figure 2: The process of ion migration (a) Due to the built-in potential the positive 

ions move towards the HTL and negative ions move towards ETL (b) The ions move towards 

the contact layers and form space charge regions which develops an electric field opposing 

the built-in electric field. The effective built-in potential is reduced to 𝑉𝑏𝑖
′ = 𝑉𝑏𝑖 − 𝑉𝑖𝑜𝑛 (c) If 

(a) 

(b) 

(c) 
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we apply bias in forward direction above a threshold voltage the ions start to migrate in a 

direction indicated in the figure. We have an effective net voltage, 𝑉𝑛𝑒𝑡 = 𝑉𝑏𝑖 − 𝑉𝑖𝑜𝑛 − 𝑉𝑎𝑝𝑝 

 

The reason we must apply a minimum voltage to initiate this ion migration is that we 

must overcome the barrier due to the effective built-in potential and there might be some 

interface charge traps as well. Below this threshold voltage we might have some ion migration 

due to diffusion as the barrier lowers because of applying a small forward bias but above this 

threshold voltage ion migration due to drift dominates and we have observed a significant 

increase in migration of ions. In this section, I have showed a method to calculate this onset of 

ion migration voltage from capacitance vs time plot at different bias. The measured net 

capacitance can be expressed as,  

𝐶𝑛𝑒𝑡 =  
𝑑𝑄

𝑑𝑉
 

The capacitance that we measure at a given bias voltage has three charge components: 

the depletion charge due to the built in potential, the injection charge due to applied bias and 

the ion charge due to ion migration. So, total charge that contributes to the net capacitance can 

be expressed as,  

𝑄 = 𝑄𝑑𝑒𝑝𝑙 + 𝑄𝑖𝑛𝑗 + 𝑄𝑖𝑜𝑛 

The net voltage (V) is effective on all three types of charges and so we can take 

derivative with respect to V on both sides of equation 3,  

𝑑𝑄

𝑑𝑉
=

𝑑𝑄𝑑𝑒𝑝𝑙

𝑑𝑉
+

𝑑𝑄𝑖𝑛𝑗

𝑑𝑉
+

𝑑𝑄𝑖𝑜𝑛

𝑑𝑉
 

Equation 4.10 can be expressed as three capacitance components,  

𝐶𝑛𝑒𝑡 = 𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗 + 𝐶𝑖𝑜𝑛 

(2) 

 

(3) 

 

(4) 

 

(5) 
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From equation 5, we can see that the measured net capacitance can be expressed as 

linear combination of depletion, injection and ion capacitance components. Thus, we can 

express the contribution of capacitance from migration of ions can be expressed as,  

𝐶𝑖𝑜𝑛 = 𝐶𝑛𝑒𝑡 − (𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗) 

If we can find a way to determine the combination of depletion and injection 

capacitance (𝐶𝑑𝑒𝑝𝑙 + 𝐶𝑖𝑛𝑗), by subtracting this amount from the measured capacitance we can 

get the capacitance due to ion migration. From the parallel plate capacitance approximation, 

we can relate the amount of charges and the capacitance due to ion migration,  

𝑄𝑖𝑜𝑛 = 𝑉𝐶𝑖𝑜𝑛 

We can express the rate of ion migration as a function of rate of change in capacitance. 

Figure 3(a) shows the ionic capacitance vs time curve for a n-i-p device with perovskite layer 

thickness of 400 nm. For this measurement before starting measurement at any bias we have 

kept the device at short circuit condition in dark to stabilize the capacitance and to ensure that 

the device is at similar initial condition before measuring at every bias. Then we have 

instantaneously changed the bias from short circuit condition to a specific biasing voltage. So, 

at time t=0 assuming there is no ion migration the capacitance we have measured indicates the 

combination of depletion and injection capacitance components. Then we have measured the 

capacitance at different time. If we deduct the capacitance at time t=0 from measured 

capacitance at time 𝑡 = 𝑡1, we can get the ionic capacitance due to ion migration. Then we 

have plotted this ionic capacitance as a function of time [figure 3(a)]. From this figure, we can 

see that initially the capacitance increases very quickly and finally reaches a linear or steady 

state condition. Another important thing to observe from this plot is that the slope of these 

curves at linear region increases with increasing bias voltage as the rate of ion migration is 

(6) 

 

(7) 
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higher at higher bias voltage. Thus, the slope of this linear region is a function of rate of ion 

migration. Then we have plotted the slope of steady state response as a function of bias voltage 

[figure 3(b)] which can be fitted as a straight line. The line has an intercept at x-axis of 0.45 

V. This intercept shows that below 0.45 V the rate of ion migration is negligible and above 

0.45 V we have significant ion migration. We call this threshold voltage as onset of ion 

migration voltage. We have also repeated the same procedure below 0.45 V (at 0.3 V and 0.35 

V) to observe if there is any significant ion migration or not and we have observed that the 

change in ionic capacitance is not significant below this threshold voltage [figure 3(a)]. The 

onset of ion migration voltage will vary with change in perovskite layer thickness. So, we have 

calculated the optimum electric field (𝐸𝑜𝑝𝑡) that is required for ion migration which is 

independent of thickness and we have got a value of 1.13 𝑉 µ𝑚−1 for this 400nm device which 

is consistent with the result reported by Xiao et al. [11] and Deng et al. [12] where they have 

reported that to switch the photo-current direction from polling effect they had to apply an 

electric field of around 1𝑉 µ𝑚−1. We have also repeated the same experiment for 500 nm and 

600 nm thick perovskite layer devices and we have obtained this optimum electric field of 1.18 

𝑉 µ𝑚−1 and 1.05 𝑉 µ𝑚−1 respectively. 

 

Table 4.3: Optimum electric field required for ion migration at different perovskite 

layer thickness 
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Figure 3: Calculation of onset of ion migration voltage and optimum electric field 

required for ion migration in a 400nm perovskite layer n-i-p device (a) Plot shows ionic 

capacitance as a function of time at different forward biasing conditions. The graph clearly 

shows the slope at linear region increases with increasing forward bias voltage. That 

signifies the rate of ion migration is higher at higher bias voltage. (b) Plot shows the slope of 

linear region at different bias voltage as a function of bias voltage. We can fit the data points 

by a straight line and the x-intercept gives the onset of ion migration voltage. From this 

voltage, we can calculate the optimum E-field required for ion migration. 

 

Now there are several research groups who have reported the significant increase in 

open circuit voltage and efficiency during light soaking [11,12,27]. This behavior can be 

explained from ion migration. As we have showed in short circuit condition the ions move near 

the contact layers to form space charge regions and that reduces the effective built-in potential. 

As a result, the starting open circuit voltage is lower. When the device is illuminated the photo-

voltage acts as forward bias and initiates ion migration which increases the effective built-in 

potential and so the open circuit voltage increases. The increased open circuit voltage further 

increases the ion migration and as a result increases the effective built-in potential as well as 

the open circuit voltage. This process continues until the open circuit voltage saturates as the 

drift and reverse diffusion of ions are balanced [12].  
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Figure 4: These plots show the comparison of light IV curves of 400 nm perovskite 

(n-i-p) solar cell at different biasing conditions before measurements (a) Shows the evolution 

of light IV curves during light soaking in open circuit condition for 20 minutes. We can 

clearly observe the evolution of open circuit voltage with time. The arrow shows the 

direction of evolution with increasing time. The efficiency showed on the graph is after 20 

mins of light soaking. (b) Shows the evolution of light IV curves when it was kept in dark at 

forward bias with biasing voltage of 0.9 V which is greater than the onset of ion migration 

voltage of 0.45 V. We can clearly observe the evolution of open circuit voltage with time. 

Again, the arrow shows the direction of evolution with increasing time. The efficiency on the 

graph is after 10 mins of forward bias at 0.9 V in dark. (c) Shows the light IV curves when he 

device was kept in dark for 20 minutes in forward bias at biasing voltage of 0.3 V which in 

smaller than the onset of ion migration voltage of 0.45 V. As we have predicted that we don’t 

have significant ion migration at this voltage, we don’t have signification voltage evolution. 

(d) Shows the light IV curves when the device was kept in dark at reverse bias condition with 

biasing voltage of -0.5 V after the open-circuit voltage saturates at the maximum value. As 

we have expected the open circuit voltage decreases with increasing time. The arrow shows 

the direction of light IV characteristic change with time. 
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Figure 5: Shows the comparison of open circuit voltage evolution of 400 nm perovskite solar 

cell at different biasing conditions prior to measurement. Here in case of all the biasing 

conditions the device was kept in dark. We can clearly observe that at forward bias of 0.9 V 

in dark the open circuit voltage increases very rapidly as the rate of ion migration is very 

high at this bias. But in case of forward bias of 0.3 V in dark the open circuit voltage 

evolution is insignificant as we don’t have any significant ion migration at this biasing 

voltage. There is very slight increase in open circuit voltage because of the exposure during 

measurement but that is not significant. At reverse bias in dark the open circuit voltage 

decreases with time as expected. 

 

If our model is accurate, we should also observe the open circuit voltage evolution even 

when we apply a bias in forward direction in dark. And as we have discussed for the 400nm 

device if we apply forward bias more than 0.45 V we should observe voltage evolution as the 

ion migration is significant in this range. Similarly, if we apply a forward bias less than 0.45 

V we should not observe any significant voltage evolution as we can neglect ion migration in 

this range. Also in reverse bias, the open circuit voltage should decrease as the ions move in 

opposite direction. From figure 4 we can see that the open circuit voltage saturates very quickly 

if we keep it in dark at forward bias voltage of 0.9 V [figure 4(b)] compared to light soaking 
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[figure 4(a)]. At a forward bias voltage of 0.3 V the open circuit voltage should not increase 

significantly [figure 4(c)] although we have seen very slight increase as the device was under 

illumination during the measurements. So, the results from light IV also matches with the result 

that we have got from the ionic capacitance vs time curves. In figure 5 the comparison of open 

circuit voltage evolution has been shown at different preconditions before measurement. 

In summary we have measured the optimum electric field which is required for ion 

migration in perovskite based solar cells. And we have measured this value to be around 

1 𝑉 µ𝑚−1 and we have described a procedure to measure it. Also, we have showed that this 

result can explain some interesting behaviors that we observe in light IV measurement. 
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